FIRE STATION 35

SAN FRANCISCO, CA

RE: City of San Francisco

Date: February 3, 2021

To: Prospective Bidders

RE: Floating Barge

The City of San Francisco has expressed concern that a rigid foundation will not provide adequate service life for the intended Fire Station 35 due to the threat of global warming and rising sea levels. With the total building life cycle in mind, the City of San Francisco requests that prospective bidders provide design considerations for a tethered, floating steel barge to support the Fire Station.

Selection of systems and materials pertaining to the alteration of the design intent remain the responsibility of the Design-Builder. Design-Builders are required to prepare a narrative, schedule, and risk/benefit analysis based upon the following:

- Scope: Floating Steel Barge
 - o Dimensions: 180' x 80' x 10'
 - o Design Life: 75 years
 - o Design Float Freeboard: 5 feet
- Design Performance Criteria:
 - Seismic Risk Category IV
 - Survive a 100-year storm event with minimal damage to facility.
 - o Maintain adequate float keel clearance at extreme low tide.
 - Floating barge shall be moored using steel pipe guide piles founded in competent subsurface strata.
 - o Design shall include wind, current and wave loading criteria.

Deliverables:

- *Design Narrative*: Based on the information provided, provide a clear design and construction approach to meet the above requirements. Include design considerations for super structure and interior finishes and clearly define how these are affected by utilizing a floating barge.
- Schedule: Prepare a separate schedule section for steel barge construction activity.
 - Minimum (10) activities required (including but not limited to):
 - Barge Tank Fabrication/Connection
 - Ballast Construction
 - Guide Pile Placement
 - Deck Form/Utility Rough-In
 - Deck Pour
 - Transfer Span (Access Ramp)
 - o Barge Construction Schedule MUST FINISH BY Utility Tie-In Date
- *Risk/Benefit Analysis*: Provide a risk/benefit analysis comparing the floating barge to a traditional dry dock marine structure.

	16	15	14	13	12	11	,						
	DESIGN CR					<u>-</u>							
М	SPECIFICATIO	NS											
	Primary												
	ABS Rules American Bureau of Shipping, Rules for Building and Classing Steel Vessels 2011. Houst												
			American Bureau of Shipping, 2011.										
L	ABS Shipbu		American Bureau of Shipping, <i>Shipbuilding and Repair Quality Standard for Hull Structure during Construction 2007</i> . Houston, TX: American Bureau of Shipping, 2007.										
	ASCE 61		American Society of Civil Engineers/Coasts, Oceans, Ports, and Rivers Institute 61-14: Seis Design of Piers and Wharves. Reston, VA: ASCE, 2014										
K	CBC		International Code Council and the California Building Standards Commission, 2016 California Building Code, California Code of Regulations. Sacramento, CA: CBSC, 2016.										
n	PoSF	2016 P	2016 Port of San Francisco Port Building Standard Code										
	Secondary	Secondary											
	AISC			el Construction, <i>St</i> el Construction, 20		lanual, 14 th Editior	n. Chicago						
J	ASCE 7		•	Engineers, ASCE/S ston, VA: American	-	•	oads for						
	AWS		-	ty, AWS D1.1/D1.1 Iding Society, 2015	-	Welding Code – S	teel, 23 ^{nc}						
Н	ABS Weldi	-	American Bureau of Shipping, <i>Rules for Materials and Welding (Part 2) 2003</i> . Houston, TX American Bureau of Shipping, 2003.										
	DESIGN REFEF AASHTO	R ENCES (INFORMA Americ		CRITERIA) State Highway and	Transportation Of	ficials, Inc., AASH	TO LRFD I						
G	ACOE	-	Design Specifications, 8th Edition. Washington, DC: AASHTO, 2017. Army Corp of Engineers, Coastal Engineering Manual, Washington D.C.: US Army Corp of										
		-	Engineers, 2008.										
	MIL MOTEMS		MIL-HDBK-1026/4A Mooring Design, Department of Defense Handbook, Washington, D. International Code Council and the California Building Standards Commission, Notice of F										
F	WIGTEINIG	Action,	Action, Marine Oil Terminals in 2001 California Building Code, California Code of Regulati Title 24, Part 2, Vol. 2. CBSC, 2001.										
	PIANC			Maritime Navigati Belgium: Internatio			esign of						
F	GENERAL (REI	F A)											
E	-	-	uctures will be des	igned to be operat	ional with no to m	inimal damage aft	er the O						
	damage after This meets or	the Design Earthque exceeds ASCE 61 r	uake (DE, 2/3 of the equirements, and	ingency Level Earth ie Maximum Consid is consistent with t SCE 61 for damage	dered Earthquake the Marine Structu	design motions) a Iral criteria provide	nd 100-y						
D	Occupancy Ca	J.1 page 88, "Seismic Performance Criteria". See ASCE 61 for damage definitions and strain limits. Occupancy Category (CBC): IV											
	Risk Category:												
C	Design life: 50	years typical, 25 y	ears for fenders.	Design to consider	sea level rise in 50) years, i.e., the ye	ar 2070.						
	visually inspec	ted every two yea	rs and any cracks	a high fatigue relia repaired in accorda	ance with AWS D1.	1 requirements fo	r dynami						
	structures.	he marine structur	al engineer shall b	e sent documenta	tion of the discove	red cracks and rep	bairs.						
В	DATUM Elevations are	North American V	ertical Datum of 1	.988 (NAVD 88) un	ess otherwise not	ed.							
Α													
	16	15	14	13	12	44							

16

15

14

13

12

9

WATER LEVELS (REF. A)

on, TX:

res

Seismic

lifornia

ago, IL:

or Buildings

3nd Edition.

TX:

) Bridge

of

D.C.,1999.

f Proposed ations,

of Fender

Operating Level ed and repairable -year Design Storm. eference A, Appendix

J.

float deck should be mically loaded

Level	Elev. (ft) NAVD 88
Design High Water - Tsunami	16.60
Design High Water - Operating	12.22
Design Base Flood Elevation (100 year Still Water Level)	9.80
Maximum (highest observed level)	9.42
Highest Astronomical Tide	7.75
Mean Higher High Water (MHHW)	6.37
Mean High Water (MHW)	5.76
Mean Sea Level (MSL)	3.22
Mean Low Water (MLW)	1.19
SFVD2013	0.02
NAVD88	0.00
Mean Lower Low Water (MLLW)	-0.23
Lowest Astronomical Tide	-2.17
Design Low Water	-2.42
Minimum (lowest observed tide)	-2.80

6

Notes:

1. Water Levels based on RFP Appendix J.1 – Technical Design Criteria, Table 13 on page 92, and NOAA site, Station 9 San Francisco, CA

- 2. "Design High Water Tsunami" based on Tsunami of 8.04 ft + MHW + Sea Level Rise of 2.8 ft by 2070, where Tsun is based on the "Attachment B – City & County of San Francisco Coastal Tsunami Inundation Map" in the "City & C San Francisco Emergency Response Plan, Tsunami Response Annex" dated September 2008 and SLR is based on RI J.1 – Technical Design Criteria, Water Levels on page 76.
- 3. "Design High Water Operating" based on Maximum (highest observed level) of 9.42' + Sea Level Rise of 2.8 ft by Wave action will be accounted for in the pile length design.
- 4. Design Low Water based on expected Sea Level Rise in 2020 from NOAA site, Extreme Water Levels for Station 94 Francisco, CA
- 5. SFVD2013: From RFP Appendix J.1 Technical Design Criteria, page 58:

Datum

The Record of Survey provided by Public Works indicated that the Geometric Datum is NAD83 (2011) and the reference network is CCSF – 2013 HPN. The City of San Francisco recently changed their vertical datum. The Designer should take note that record drawings or as-built drawings may be on the old City Datum. The conversion from current datum is as follows:

SFVD2013 = Old City Datum + 11.35'

From RFP Appendix J.1 – Technical Design Criteria, page 534:

SF City Datum = NAVD88 - 11.326'

- 6. Sea Level Rise of 4.5' by 2100 (80 years) based on the maximum of the following:
 - a. Rate of sea level risk for 50 year design life projected to 80 years
 - b. Mid-level projection of sea level rise of 46" in Table 6-2 in POSF Seawall Vulnerability Study, Phase 2 re Appendix J.4

10

11

8

9

7

6

5

1		
		М
		L
		K
		J
		H
4290, ni height nty of		G
Appendix 70. 290, San		F
	100% MS CD SET NOTE: If this drawing is not 34"x22" it has been revised from its original size and the scales noted on drawing/details are no longer applicable.	E
	© 2018 Shah Kawasaki Architects NO. DATE ISSUE DESCRIPTION B 11/2/18 90% MARINE STRUCTURAL CD C 12/14/18 MARINE STRUCTURAL SHOP DRAWINGS 1 D 01/25/19 MARINE STRUCTURAL FOR SHOP DRAWINGS 2 1 06/07/19 100% MARINE STRUCTURAL CD	D
rt, in RFP	SAN FRANCISCO FIRE DEPARTMENT FIRE BOAT 35	С
	Architect of Record S H A H KAWASAKI ARCHITECTS ⁵⁷⁰ 10th Street, Suite 201 Oakland, CA 94607 ROFESSIONA G S O C C THE CONSULTANTS INC. 344 20th Street, Suite 360 Oakland, Ca 94612 Ph: (510) 832-5606 JOB# 2212 Drawing Title DESIGN CRITERIA - 1	В
	FOR LIFTECH CONSULTANTS INC SIGNATURE DATE: 06/07/19 Drawing No. MSS-002 Sheet No. of	A
1	File Path: \\moe\2212\2212\drawing\!production\!liftech\ms-009 design criteria - 8.dwg Plotted By: ALVIN HOFFPAUIR Plot Date: 6/7/2019 5:24 PM	

16	15	14	13	12	11
			· · · · · · · · · · · · · · · · · · ·		

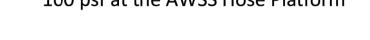
VESSEL DATA (REF. A)

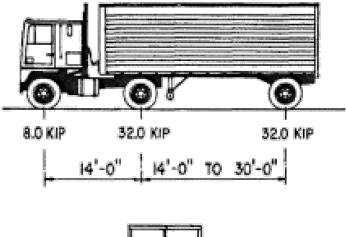
Μ

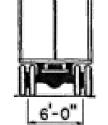
Κ

Vessel	Guardian	Phoenix	St. Francis	Moose Boat
Length Overall, LOA	88'	89'	88'	37'-10"
Beam	21.6'	19.5'	26.0′	13'-6"
Maximum	188 long	146 long	260 long	8 long tons
Displacement	tons	tons	tons	(dry)
Loaded Draft	7.0'	7.0'	9.0′	1.83′
Freeboard at Midship	3.5′	5.67′ (1)	7.25′ (1)	
Trim	4.0'			

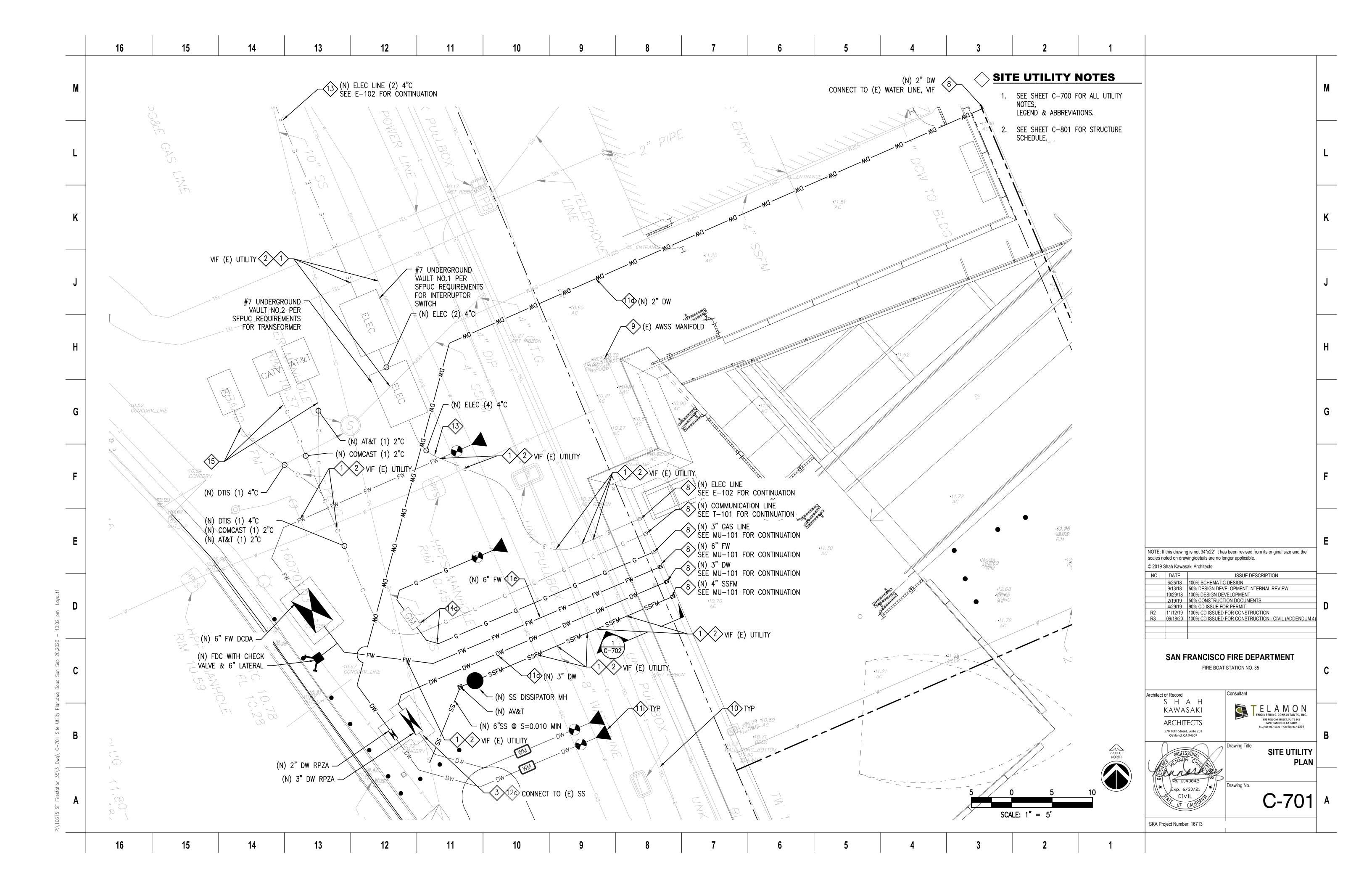
Based on RFP Appendix J.1 – Technical Design Criteria, Table 12 on page 91; RFP Addendum No. 3 Item 18; and Ma visit, measured at mid vessel (items marked with (1))


Η BASIC LOADS – UNFACTORED (ASD) UNLESS OTHERWISE NOTED


GENERAL LOAD DEFINITIONS


D Dead Load – Weight of Fixed Structure and Components

•	Live L	oads							
G	LU	Uniform Loads from People and Equipment							
	LC	Concentrated Loads	•••						
	LB	Vessel Berthing							
	LM	Mooring Loads							
F	Enviro	onment Loads Excluding Wind							
	EW	Waves							
	EM	Marine Growth = 5 psf on sub	morgod surfaces						
	EC	Current	nergeu surfaces						
	EC	Current							
	W	Wind Loads per ASCE 7-10 unl	ess otherwise noted						
E									
		qzG = 0.00256 Kz Kzt Kd	V ² G (psf)						
		= 20 psf at 15' abo							
		Basic wind speed, V 115 mp	h, 3-s gust, at 33 ft						
_		Risk Category	IV						
D		Exposure category	D						
		Velocity pressure coef., K _z	z < 15': K _z = 1.05						
			$z \ge 15'$: $K_z = 2.01 (z/700)^{0.17}$						
		Structure height, z	in feet						
		Topographic factor, K _{zt}	1.0						
•		Directionality factor, Kd	0.85						
С		Gust effect factor, G	0.85						
	S	Earthquake Loads, Factored (L	RFD)						
		Inertial loads based on site spe	ecific ground motions (see Float, Gangway, and Pier sections)						
В									
D									
Α									
A									


10 9	8	7	6	5	4	3	2	1		
ľ	COMPON	NENT LOAD DEFINITION	IS							
	Railings /	/ Guardrails (CBC is prii		М						
		.U _R Lateral Load .C _R 200 lbs on ha								
	Gangway	y (CBC is primary desig	n specification)							
		ive Loads - Individual N U _G 100 psf		L						
		C _G 400 pounds								
	S E	Earthquake Loads, Facto	ored (LRFD)							
	C	The Port of SF has agree orthogonal directions. I following EQ loading co	Based on this and o	on much smaller f	loat design storm	and EQ acceleration	ons, we recommen			K
			Transverse Directio	_				5 .1		
		ga	angway	-	-		al mass (weight) of	t the		J
		ii. Fl b. EQ 100% in L								
d March 6, 2018, site		i. Pi ii. Fl								
	Access R	amp (CBC is primary de	esign specification)						н
		ive Loads - Individual N .U _{AR} 250 psf (betw								
		.C _{AR} AASHTO HS2 .U _{HP} 100 psf at th								
		Æ								
		8.0 KIP 32.0 KIP 32.0 KIP								
										F
		h -	40 440 10 3							<u> </u>
									100% MS CD SET	
									NOTE: If this drawing is not 34"x22" it has been revised from its original size and the scales noted on drawing/details are no longer applicable.	╡╘
			6'-0"						© 2018 Shah Kawasaki Architects NO. DATE ISSUE DESCRIPTION B 11/2/18 90% MARINE STRUCTURAL CD	
	٦	Note: LL deflection ≤ L/2	180 maximum (REI	F. A)					C 12/14/18 MARINE STRUCTURAL SHOP DRAWINGS 1 D 01/25/19 MARINE STRUCTURAL FOR SHOP DRAWINGS 2 1 06/07/19 100% MARINE STRUCTURAL CD	D
	S A	Access ramp and gangw	ay structure desig	ns controlled by n	on-seismic loads					
		Access ramp connectior of pier and floats, mass								
		Gangway connections d	•		t design movemer	nts and a main nier	r/existing wharf de	sign	SAN FRANCISCO FIRE DEPARTMENT FIRE BOAT 35	c
	ā	acceleration of 1.5 g in a A large design accelerat	any lateral directio	on with a concurre	nt acceleration of	0.45 g in the ortho	ogonal lateral direc	tion.	Architect of Record Consultant	
		gangway is small, i.e., it		-	-			-	s h a h KAWASAKI Liftech	
	E,W,S [Design displacements a	nd rotations. See	sheet MS-009.					ARCHITECTS 570 10th Street, Suite 201 Oakland, CA 94607 LIFTECH CONSULTANTS INC. 344 20th Street, Suite 360 Oakland, Ca 94612 Ph: (510) 832-5606 JOB# 2212	В
									Drawing Title Design CRITERIA - 2	2
									$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ $	
									FOR LIFTECH CONSULTANTS INC. MS-003	A
									SIGNATURE DATE: 06/07/19 Sheet No. of	
10 9	8	7	6	5	4	3	2	1	File Path: \\moe\2212\2212\drawing\!production\!liftech\ms-009 design criteria - 8.dwg Plotted By: ALVIN HOFFPAUIR Plot Date: 6/7/2019 5:24 PM	

14	13	12	11	10	9	8	7	6	5	4	3

