THESE GENERAL NOTES ARE TO BE USED AS A SUPPLEMENT TO THE SPECIFICATIONS, ANY DISCREPANCIES FOUND AMONG THE DRAWINGS, THE SPECIFICATIONS, THESE GENERAL NOTES AND THE SITE CONDITIONS SHALL BE REPORTED TO THE ARCHITECT, WHO SHALL CORRECT SUCH DISCREPANCY IN WRITING. ANY WORK DONE BY THE GENERAL CONTRACTOR AFTER DISCOVERY OF SUCH DISCREPANCY SHALL BE DONE AT THE GENERAL CONTRACTOR'S RISK. THE GENERAL CONTRACTOR SHALL VERIFY AND COORDINATE DIMENSIONS AMONG ALL DRAWINGS PRIOR TO PROCEEDING WITH ANY WORK OR FABRICATION. THE STRUCTURE HAS BEEN DESIGNED TO RESIST CODE REQUIRED VERTICAL AND LATERAL FORCES AFTER THE CONSTRUCTION OF ALL STRUCTURAL ELEMENTS HAS BEEN COMPLETED. STABILITY OF THE STRUCTURE PRIOR TO COMPLETION IS THE SOLE RESPONSIBILITY OF THE GENERAL CONTRACTOR. THIS RESPONSIBILITY INCLUDES BUT IS NOT LIMITED TO JOB SITE SAFETY ERECTION MEANS, METHODS, AND SEQUENCES: TEMPORARY SHORING, FORMWORK, AND BRACING: USE OF EQUIPMENT AND CONSTRUCTION PROCEDURES. PROVIDE ADEQUATE RESISTANCE TO LOADS ON THE STRUCTURES DURING CONSTRUCTION PER SEI/ASCE STANDARD NO. 37-02 "DESIGN LOADS ON STRUCTURES DURING CONSTRUCTION."

CONSTRUCTION OBSERVATION BY THE STRUCTURAL ENGINEER IS FOR GENERAL CONFORMANCE WITH DESIGN ASPECTS ONLY AND IS NOT INTENDED IN ANY WAY TO REVIEW THE CONTRACTOR'S CONSTRUCTION PROCEDURES.

<u>STANDARDS</u>

ALL METHODS, MATERIALS AND WORKMANSHIP SHALL CONFORM TO THE 2006 INTERNATIONAL BUILDING CODE (IBC) AS AMENDED AND ADOPTED BY THE LOCAL BUILDING OFFICIAL OR APPLICABLE JURISDICTION.

CONTRACT DRAWINGS / DIMENSIONS

ARCHITECTURAL DRAWINGS ARE THE PRIME CONTRACT DRAWINGS. CONSULTANT DRAWINGS BY OTHER DISCIPLINES ARE SUPPLEMENTARY TO ARCHITECTURAL DRAWINGS, REPORT DIMENSIONAL OMISSIONS OR DISCREPANCIES BETWEEN ARCHITECTURAL DRAWINGS AND STRUCTURAL, MECHANICAL, ELECTRICAL OR CIVIL DRAWINGS TO ARCHITECT PRIOR TO PROCEEDING WITH WORK.

STRUCTURAL DRAWINGS SHALL BE USED IN CONJUNCTION WITH ARCHITECTURAL DRAWINGS. PRIMARY STRUCTURAL ELEMENTS ARE DIMENSIONED ON STRUCTURAL PLANS AND DETAILS AND OVERALL LAYOUT OF STRUCTURAL PORTION OF WORK. SOME SECONDARY ELEMENTS ARE NOT DIMENSIONED SUCH AS, WALL CONFIGURATIONS. INCLUDING EXACT DOOR AND WINDOW LOCATIONS, ALCOVES, SLAB SLOPES AND DEPRESSIONS, CURBS, ETC. VERTICAL DIMENSIONAL CONTROL IS DEFINED BY ARCHITECTURAL WALL SECTIONS AND BUILDING SECTIONS. STRUCTURAL DETAILS SHOW DIMENSIONAL RELATIONSHIPS TO CONTROL DIMENSIONS DEFINED BY ARCHITECTURAL DRAWINGS. DETAILING AND SHOP DRAWING PRODUCTION FOR STRUCTURAL ELEMENTS WILL REQUIRE DIMENSIONAL INFORMATION CONTAINED IN **BOTH** ARCHITECTURAL AND STRUCTURAL DRAWINGS.

DESIGN CRITERIA

VERTICAL LOADS

AREA	DESIGN DEAD	LIVE LOAD (1)	PARTITION	CONCENTRATED
	LOAD	` `	LOAD	LOADS
ROOF		25 PSF		
MECHANICAL ROOM		50 PSF	+EQUIPMENT	2,000#
OFFICE		50 PSF	+15 PSF	2,000#
CORRIDORS (ABOVE 1ST FLR)		80 PSF		2,000#
CORRIDORS (1ST FLR)		100 PSF		2,000#
STAIRS		100 PSF		300#
LOBBY AREA		100 PSF		2,000#
LIGHT STORAGE		125 PSF		2,000#
EMERGENCY ROOM		80 PSF		1,000#
LABORATORIES		60 PSF		1,000#
PATIENT ROOMS		60 PSF	15 PSF	1,000#

(1) LIVE LOADS EXCEPT SNOW LOADS ARE REDUCED PER IBC SECTION 1607.9.

LATERAL FORCES

LATERAL FORCES ARE TRANSMITTED BY DIAPHRAGM ACTION OF ROOF AND FLOORS TO SHEAR WALLS. LOADS ARE THEN TRANSFERRED TO FOUNDATION BY SHEAR WALL ACTION WHERE ULTIMATE DISPLACEMENT IS RESISTED BY PASSIVE PRESSURE OF EARTH AND/OR SLIDING FRICTION. OVERTURNING IS RESISTED BY DEAD LOAD OF THE STRUCTURE.

- THE BUILDING MEETS THE CRITERIA TO USE THE "METHOD 1 SIMPLIFIED PROCEDURE" PER ASCE 7-05.
- EXPOSURE CATEGORY = B
- BASIC WIND SPEED, V_{3S} = 85 MPH - WIND IMPORTANCE FACTOR, Iw = 1.15
- BUILDING CATEGORY PER TABLE 1604.5 = I - TOPOGRAPHIC FACTOR = 1.38
- INTERNAL PRESSURE COEFFICIENT (ENCLOSED) ±0.18
- COMPONENTS AND CLADDING LOADS (BASED ON EFFECTIVE WIND AREA = 10SF)
- FOR WIND UPLIFT MAP SEE SHEET S0.07 - FOR CLADDING PRESSURES SEE SHEETS S0.05 & S0.06

SEISMIC: SEISMIC HAZARD AND GROUND MOTION STUDIES PER "GEOTECHNICAL ENGINEERING SERVICE, SEISMIC DESIGN, MULTICARE EMERGENCY ROOM EXPANSION. TACOMA. WASHINGTON - DATED MAY 23, 2007" BY GEOENGINEERS INC.

A NON-LINEAR RESPONSE HISTORY ANALYSIS WAS PERFORMED BASED UPON THE REQUIREMENTS OF ASCE 7-05 SECTION 16.2.

SEISMIC IMPORTANCE FACTOR, Ie = 1.5SPECTRAL RESPONSE ACCELERATIONS Ss = 1.22 & S1 = 0.42

ATTACHMENTS SHALL CONFORM TO NFPA PAMPHLET 13.

SITE CLASS PER TABLE 1613.5.3 = C SPECTRAL RESPONSE COEFFICIENTS SDS = 0.813 & SD1 = 0.386

SEISMIC DESIGN CATEGORY PER TABLE 1613.5.6 = D ANALYSIS PROCEDURE USED = NON-LINEAR RESPONSE HISTORY

RESPONSE MODIFICATION FACTOR PER TABLE ASCE 7-05, TABLE 12.2-1, R = 6PIPES, DUCTS AND MECHANICAL EQUIPMENT SUPPORTED OR BRACED FROM STRUCTURE, CONFORM TO SHEET METAL AND AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION, INC. PUBLICATION "SFISMIC RESTRAINT MANUAL: GUIDELINES FOR MECHANICAL SYSTEMS". SPRINKLER LINE

<u>FOUNDATION DESIGN CRITERIA</u> "GEOTECHNICAL ENGINEERING SERVICE, SEISMIC DESIGN, MULTICARE EMERGENCY ROOM EXPANSION, TACOMA, WASHINGTON - DATED MAY 23, 2007" BY GEOENGINEERS,

SOIL BEARING PRESSURE: 4500 PSF ABOVE ELEVATION 320, 8000 PSF BELOW ELEVATION 320 DRILLED PIERS: 22.5 KSF (SERVICE), 55 KSF (STRENGTH & LIMIT STATUS) 1.0 KSF SHAFT FRICTION (CASED)*

3.0 KSF SHAFT FRICTION (UNCASED)* MODULUS OF SUBGRADE REACTION = 300 pci ACTIVE PRESSURE - RESTRAINED: 55 PCF +5H SEISMIC SURCHARGE

ACTIVE PRESSURE - UNRESTRAINED: 35 PCF +5H SEISMIC SURCHARGE PASSIVE RESISTANCE: 300 PCF (INCLUDES F.O.S. \geq 1.5) COEFFICIENT OF FRICTION: .40 (INCLUDES F.O.S. ≥ 1.5) *1/3 INCREASE ALLOWED FOR SEISMIC OR WIND LOADING

950 Pacific Avenue, Suite 1100
Tacoma, Washington 98402
tel: 253.383.2797

ALL FOOTINGS SHALL BEAR ON FIRM, UNDISTURBED EARTH OR "STRUCTURAL BACKFILL". NATIVE EARTH BEARING SHALL BE SURFACE COMPACTED. AREAS OVER-EXCAVATED SHALL BE BACKFILLED "STRUCTURAL BACKFILL AT ELEVATION ABOVE 320' AND WITH LEAN CONCRETE (F'c=2000 PSI) OR "CRUSHED ROCK BASE COURSE (WSDOT9-03.9) BELOW ELEV. 320' ". AREAS DESIGNATED "STRUCTURAL BACKFILL" SHALL BE FILLED WITH APPROVED WELL-GRADED BANKRUN MATERIAL MAXIMUM SIZE OF ROCK 4". FROZEN SOIL, ORGANIC MATERIAL AND DELETERIOUS MATTER NOT ALLOWED. COMPACT TO AT LEAST 95% OF ITS MAXIMUM DENSITY AS DETERMINED BY ASTM D-1557. CONTRACTOR SHALL EXERCISE EXTREME CARE DURING EXCAVATION TO AVOID DAMAGE TO BURIED LINES, TANKS, AND OTHER CONCEALED ITEMS. UPON DISCOVERY, DO NOT PROCEED WITH WORK UNTIL RECEIVING WRITTEN INSTRUCTIONS FROM ARCHITECT. A COMPETENT REPRESENTATIVE OF THE OWNER SHALL INSPECT ALL FOOTING EXCAVATIONS FOR SUITABILITY OF BEARING SURFACES PRIOR TO PLACEMENT OF REINFORCING STEEL. PROVIDE DRAINAGE AND DEWATERING AROUND ALL WORK TO AVOID WATER-SOFTENED FOOTINGS.

FREE DRAINING BACKFILL MATERIAL FOR RETAINING & BASEMENT WALLS

A CLEAN, FREE DRAINING, WELL GRADED GRANULAR MATERIAL CONFORMING TO ASTM D2487 GW OR SW WHOSE MAXIMUM PARTICLE SIZE DOES NOT EXCEED 3/4" AND WHOSE FINES CONTENT (MATERIAL PASSING THE NO. 200 SIEVE) DOES NOT EXCEED 5%,

% PASSING U.S. NO. 200 SIEVE WITH A MAXIMUM DUST RATIO % PASSING U.S. NO. 40 SIEVE

DRILLED PIERS:

DRILLED PIERS SHALL BE FOUNDED IN THE GLACIAL TILL SOILS. THE PIERS MAY BE DRILLED OPEN OR CASED. PIERS SHALL CONFORM TO THE REQUIREMENTS OF IBC SECTIONS 1808 & 1810.

THE DESIGN EXCAVATION DEPTHS. AND BEARING SURFACES SHALL BE VERIFIED IN THE FIELD BY THE SOIL TESTING AGENCY WHO WILL EVALUATE THE CONTRACTOR'S OPERATION AND COLLECT, INTERPRET, AND RECORD INSTALLATION DATA. CONCRETE PLACEMENT AND PIER REINFORCING SHALL BE VERIFIED BY THE SPECIAL INSPECTOR.

CONCRETE

CAST-IN-PLACE CONCRETE

CODES, SPECIFICATIONS, AND STANDARDS. CONCRETE WORK SHALL CONFORM TO THE FOLLOWING CODES. SPECIFICATIONS, AND STANDARDS, AND THE STANDARDS AND SPECIFICATIONS THEY REFERENCE. THE CONTRACTOR SHALL OBTAIN AND HAVE READILY AVAILABLE ON SITE THE LATEST VERSION OF THE "ACI MANUAL OF CONCRETE PRACTICE":

- 1. ACI-116 'CEMENT AND CONCRETE TERMINOLOGY'.
- 2. ACI-301 'STANDARD SPECIFICATIONS FOR STRUCTURAL CONCRETE'. 3. ACI-302 'GUIDE TO CONCRETE FLOOR AND SLAB CONSTRUCTION'.
- 4. ACI-304 'GUIDE FOR MEASURING, MIXING, TRANSPORTING, AND PLACING CONCRETE'.
- 5. ACI-305 'HOT WEATHER CONCRETING'.
- 6. ACI-306 'COLD WEATHER CONCRETING'.
- 7. ACI-308 'STANDARD SPECIFICATION FOR CURING CONCRETE'. 8. ACI-309 'STANDARD PRACTICE FOR CONSOLIDATION OF CONCRETE'.
- 9. ACI-311 'GUIDE FOR CONCRETE INSPECTION'.
- 10. ACI-315 'DETAILS AND DETAILING OF CONCRETE REINFORCEMENT'
- 11. ACI-318 BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE
- 12. ACI-506 'GUIDE FOR SHOTCRETING'.
- 13. ACI-117 'STANDARD SPECIFICATIONS FOR TOLERANCES'
- 14. ACI-347 'GUIDE TO FORMWORK OF CONCRETE'

CONCRETE'.

- 1. ASTM C33 'STANDARD SPECIFICATION FOR CONCRETE AGGREGATES'.
- 2. ASTM C94 'STANDARD SPECIFICATION FOR READY-MIX CONCRETE'
- 3. ASTM C150 'STANDARD SPECIFICATION FOR PORTLAND CEMENT'. 4. ASTM C260 'STANDARD SPECIFICATION FOR AIR-ENTRAINED ADMIXTURES FOR CONCRETE'.
- 5. ASTM C309 'STANDARD SPECIFICATION FOR LIQUID MEMBRANE-FORMING COMPOUNDS FOR CURING
- 6. ASTM C494 'STANDARD SPECIFICATION FOR CHEMICAL ADMIXTURES FOR CONCRETE'.
- 7. ASTM C595 'STANDARD SPECIFICATION FOR BLENDED HYDRAULIC CEMENTS'. 8. ASTM C618 'STANDARD SPECIFICATION FOR ... FLY-ASH...
- 9. ASTM C1017 'STANDARD SPECIFICATION FOR CHEMICAL ADMIXTURES FOR USE IN PRODUCING
- FLOWING CONCRETE'. 10. ASTM C-1116 'SYNTHETIC FIBER REINFORCED CONCRETE AND SHOTCRETE'. 11. ASTM C-1218 'STANDARD TEST METHOD FOR WATER-SOLUBLE CHLORIDE IN MORTAR AND

MIX DESIGNS: THE CONTRACTOR SHALL DESIGN CONCRETE MIXES THAT, MEET OR EXCEED THE REQUIREMENTS OF THE CONCRETE MIX TABLE. THE MIX DESIGNS SHALL FACILITATE ANTICIPATED PLACEMENT METHODS, WEATHER, REBAR CONGESTION, ARCHITECTURAL FINISHES, CONSTRUCTION SEQUENCING, STRUCTURAL DETAILS, AND ALL OTHER FACTORS REQUIRED TO PROVIDE A STRUCTURALLY SOUND, AESTHETICALLY ACCEPTABLE FINISHED PRODUCT, WATER REDUCING ADMIXTURES WILL LIKELY BE REQUIRED TO MEET THESE REQUIREMENTS. CONCRETE MIX DESIGNS SHALL CLEARLY INDICATE THE TARGET SLUMP. SLUMP TOLERANCE SHALL BE \pm 1-1/2 INCHES.

AGGREGATE: COARSE AND FINE AGGREGATE SHALL CONFORM TO ASTM C-33

CEMENT: CEMENT SHALL CONFORM TO ASTM-150, TYPE II PORTLAND CEMENT, UNLESS NOTED

FLYASH: SHALL CONFORM TO ASTM C618 CLASS C OR F, MAXIMUM LOSS OF IGNITION SHALL BE 1.0%.

ALTERNATE MIX DESIGNS: VARIATIONS TO THE MIX DESIGN PROPORTIONS MAY BE ACCEPTED IF SUBSTANTIATED IN ACCORDANCE WITH ACI-318, CHAPTER 5. PROVIDE SUBMITTALS A MINIMUM OF TWO WEEKS PRIOR TO BID FOR DETERMINATION OF ACCEPTABILITY.

ADMIXTURES: ADMIXTURES SHALL BE BY BASF (MASTERBUILDERS), W.R. GRACE, OR PRE-APPROVED EQUAL. ALL MANUFACTURERS RECOMMENDATIONS SHALL BE FOLLOWED.

WATER: SHALL BE CLEAN AND POTABLE.

MAXIMUM CHLORIDE CONTENT: THE MAXIMUM WATER SOLUBLE CHLORIDE CONTENT SHALL NOT EXCEED 0.15% BY WEIGHT OF CEMENTITIOUS MATERIAL UNLESS NOTED OTHERWISE.

CONCRETE EXPOSED TO WEATHER: PROVIDE 5.0% TOTAL AIR CONTENT FOR ALL CONCRETE EXPOSED TO WEATHER. TOTAL AIR CONTENT IS THE SUM OF ENTRAINED AIR PROVIDED BY ADMIXTURES AND NATURALLY OCCURRING ENTRAPPED AIR. AIR CONTENT SHALL BE TESTED PRIOR TO BEING PLACED IN THE PUMP HOPPER OR BUCKET: IT IS NOT REQUIRED TO BE TESTED AT THE DISCHARGE END OF THE PUMP HOSE. THE TOLERANCE ON ENTRAPPED AIR SHALL BE +2.0% AND -1.5% WITH THE AVERAGE OF ALL TESTS NOT LESS THAN THE SPECIFIED AMOUNT.

SHOTCRETE: SHALL CONFORM TO IBC SECTION 1914.

ITEM	DESIGN f'c (PSI)	MAX. W/C RATIO	MIN. FLYASH (PCY)	MAX. AGGREGATE SIZE (IN)	NOTES	MIN. CEMENTITOUS (1) MATERIAL (SACKS/YARD) ⁽²⁾
SLAB ON GRADE	4000 @ 28 DAYS	0.45	100	3/4		5-1/2
FOOTINGS	3000 @ 28 DAYS	0.50		3/4		5
MAT FOUNDATIONS	5000 @ 56 DAYS	0.50	100	3/4		5-1/2
DRILLED CAISSONS	4000 @ 28 DAYS	0.45		3/4		5-1/2
BASEMENT, RETAINING, AND STEM WALLS	4000 @ 28 DAYS	0.45	100	3/4		5-1/2
SHOTCRETE WALLS	5000 @ 28 DAYS	0.45	100	3/8		5-1/2
SLAB ON METAL DECK	4000 @ 28 DAYS	0.45		3/4		5-1/2
ELEVATED BEAMS AND SLABS	4000 @ 28 DAYS	0.45	100	3/4		5-1/2
ELEVATED PT BEAMS AND SLABS	3000 @ 3 DAYS 5000 @ 56 DAYS	0.40	100	3/4	3,4	5-1/2
COLUMNS AND SHEAR WALLS U.N.O.	4000 @ 28 DAYS	0.50		3/8		5-1/2
SHEAR WALLS WHERE NOTED	7000 @ 28 DAYS	.50		3/8		5–1/2
ALL OTHER CONCRETE	4000 @ 28 DAYS	0.50		3/4		5-1/2
CLOSURE STRIPS	5000 @ 56 DAYS	0.40	100	3/4	3,4	5-1/2

CONCRETE MIX NOTES:

- 1. TOTAL CEMENTITOUS MATERIAL IS THE SUM OF ALL CEMENT PLUS FLYASH.
- 2. AT THE CONTRACTORS OPTION FLYASH MAY BE SUBSTITUTED FOR CEMENT BUT SHALL NOT EXCEED 25% BY WEIGHT OF TOTAL CEMENTITIOUS MATERIAL, EXCEPT AS NOTED ABOVE
- 3. MAXIMUM WATER CONTENT 240 PCY.
- 4. MAXIMUM WATER SOLUBLE CHLORIDE ION CONCENTRATION 0.06 PERCENT BY WEIGHT OF CEMENTITIOUS MATERIAL

CONCRETE PLACEMENT

PLACE CONCRETE FOLLOWING ALL APPLICABLE ACI RECOMMENDATIONS, CONCRETE SHALL BE PROPERLY CONSOLIDATED PER ACI 309 USING INTERIOR MECHANICAL VIBRATORS, DO NOT OVER-VIBRATE. CONCRETE SHALL BE POURED MONOLITHICALLY BETWEEN CONSTRUCTION OR EXPANSION JOINTS. IF CONCRETE IS PLACED BY THE PUMP METHOD, HORSES SHALL BE PROVIDED TO SUPPORT THE HOSE, THE HOSE SHALL NOT BE ALLOWED TO RIDE ON THE REINFORCING. WEATHER FORECASTS SHALL BE MONITORED AND ACI RECOMMENDATIONS FOR HOT AND COLD WEATHER CONCRETING SHALL BE FOLLOWED AS REQUIRED. CONCRETE SHALL NOT FREE FALL MORE THAN 5 FEET DURING PLACEMENT WITHOUT WRITTEN APPROVAL OF STRUCTURAL ENGINEER.

FORMED SURFACES:

FORMWORK CLASS OF SURFACE PER ACI 347 TABLE	3.1
ITEM	CLASS OF FINISH
ALL SURFACES EXPOSED TO PUBLIC VIEW, U.N.O.	A
ALL SURFACES RECEIVING A COURSE TEXTURED COATING SUCH AS PLASTER OR STUCCO, UNLESS NOTED OTHERWISE	В
ALL OTHER SURFACES, UNLESS NOTED OTHERWISE	С

FORMWORK STRIPPING

COLUMNS & WALLS: COLUMNS AND WALLS NOT SUPPORTING FRAMING WEIGHT MAY BE STRIPPED AS SOON AS FORMS CAN BE REMOVED WITHOUT DAMAGING THE CONCRETE AND THE CONCRETE HAS REACHED A MINIMUM COMPRESSIVE STRENGTH OF 500 PSI.

BEAMS & SLABS: BEAMS AND SLABS MAY BE STRIPPED AND BECOME SELF SUPPORTING AS SOON AS THEIR COMPRESSIVE STRENGTH REACHES 75% OF THE SPECIFIED DESIGN STRENGTH. RESHORING SHALL BE PROVIDED FOR ALL CONSTRUCTION LOADS THEREAFTER PER THE GENERAL CONTRACTOR.

COLD WEATHER PLACEMENT

- 1. COLD WEATHER IS DEFINED BY ACI 306 AS "A PERIOD WHEN FOR MORE THAN 3 SUCCESSIVE DAYS THE MEAN DAILY TEMPERATURE DROPS BELOW 40° F."
- GROUND WITH HEATERS IS PERMISSIBLE.

2. NO CONCRETE SHALL BE PLACED ON FROZEN OR PARTIALLY FROZEN GROUND. THAWING THE

- 3. CONCRETE MIX TEMPERATURES SHALL BE AS SHOWN BELOW. HEATING OF WATER AND/OR AGGREGATES MAY BE REQUIRED TO ATTAIN THESE TEMPERATURES.
- 4. THE CONCRETE MAY REQUIRE PROTECTION FOR 4-7 DAYS AFTER POURING. IF TEMPERATURES REMAIN BELOW FREEZING, INSULATING BLANKET COVERAGE IS REQUIRED. IF TEMPERATURES ARE SLIGHTLY BELOW FREEZING (30° F MIN.) AT NIGHT AND ABOVE FREEZING DURING THE DAY, KRAFT PAPER WITH COMPLETE COVERAGE MAY BE USED IN LIEU OF INSULATED BLANKETS.
- 5. NO ADDITIVES CONTAINING CHLORIDES SHALL BE USED. USE "POZZUTEC 20+" BY MASTER BUILDERS OR "POLARSET" BY W.R. GRACE OR PRE-APPROVED EQUAL.

CONDITION OF PLACEMENT AND CURING		WALLS & SLABS	FOOTINGS
MIN. TEMP. FRESH CONCRETE AS MIXED FOR WEATHER INDICATED. DEGREES F.	ABOVE 30° F. 0 TO 30° F. BELOW 0° F.	60 65 70	55 60 65
SLAB ON GRADE	4000 @ 28 DAYS	3	5-1/2
MIN. TEMP. FRESH CONCRETE AS PLACED DEGREES F.	55	50	
MAX. ALLOWABLE GRADUAL DROP IN TEMP. THROUGHOUT FIRST 24 HOURS AFTER END OF PROTECTION, DEGREES F.		50	40

3 4	S0.03 S0.04	GENERAL NOTES GENERAL NOTES
5 6	S0.05 S0.06	CLADDING WIND PRESSURES CLADDING WIND PRESSURES
7 8	S0.07 S2.01B	ROOF WIND PRESSURE MAP FOUNDATION BOTTOM REINORCING PLAN — SOUTH
9	S2.01T S2.11B	FOUNDATION TOP REINORCING PLAN — SOUTH FOUNDATION BOTTOM REINORCING PLAN — NORTH
11	S2.11T	FOUNDATION TOP REINORCING PLAN - NORTH
12 13	\$2.02 \$2.02s	SECOND FLOOR FRAMING PLAN — SOUTH SECOND FLOOR SLAB PLAN — SOUTH
14 15	S2.12 S2.12s	SECOND FLOOR FRAMING PLAN — NORTH SECOND FLOOR SLAB PLAN — NORTH
16 17	\$2.03 \$2.03s	THIRD FLOOR FRAMING PLAN — SOUTH THIRD FLOOR SLAB PLAN — SOUTH
18	S2.13	THIRD FLOOR FRAMING PLAN - NORTH
19 20	S2.13s S2.04	THIRD FLOOR SLAB PLAN — NORTH FOURTH FLOOR FRAMING PLAN — SOUTH
21 22	S2.04s S2.14	FOURTH FLOOR SLAB PLAN — SOUTH FOURTH FLOOR FRAMING PLAN — NORTH
23	S2.14s	FOURTH FLOOR SLAB PLAN - NORTH
24 25	\$2.05 \$2.05s	FIFTH FLOOR FRAMING PLAN — SOUTH FIFTH FLOOR SLAB PLAN — SOUTH
26 27	S2.15	FIFTH FLOOR FRAMING PLAN — NORTH FIFTH FLOOR SLAB PLAN — NORTH
27 28	S2.15s S2.06	SIXTH FLOOR FRAMING PLAN - SOUTH
29 30	S2.06s S2.16	SIXTH FLOOR SLAB PLAN SOUTH SIXTH FLOOR FRAMING PLAN — NORTH
31	S2.16s S2.07	SIXTH FLOOR SLAB PLAN — NORTH REMOVED FROM SET
	S2.07s	REMOVED FROM SET
32 33	S2.17 S2.17s	SEVENTH FLOOR FRAMING PLAN — NORTH SEVENTH FLOOR SLAB PLAN — NORTH
	S2.08	REMOVED FROM SET EIGHTH FLOOR FRAMING PLAN — NORTH
34 35	S2.18 S2.18s	EIGHTH FLOOR SLAB PLAN - NORTH
36 37	S2.19 S2.19s	NINTH FLOOR FRAMING PLAN — NORTH NINTH FLOOR SLAB PLAN — NORTH
38	S2.20	TENTH FLOOR FRAMING PLAN — SOUTH SECOND FLOOR FRAMING PLAN — K—WING REMODEL
39 40	\$2.22 \$2.32	L-WING PLAZA SECOND FLOOR FRAMING PLAN
41 42	\$2.33 \$2.37	L-WING PLAZA CANOPY FRAMING PLAN ROOF FRAMING PLAN L-WING REMODEL
		SOUTH CORE ELEVATIONS
43 44	\$3.00 \$3.01	SOUTH CORE ELEVATIONS
45 46	\$3.02 \$3.03	SOUTH CORE WALL SECTION SOUTH CORE WALL SECTION
47 48	S3.04 S3.10	SOUTH CORE WALL SECTION NORTH CORE ELEVATIONS
49	S3.11	NORTH CORE ELEVATIONS
50 51	S3.12 S3.13	NORTH CORE ELEVATIONS NORTH CORE WALL SECTION
52 53	S3.14 S3.15	NORTH CORE WALL SECTION NORTH CORE WALL SECTION
54	S3.16	NORTH CORE WALL SECTION NORTH CORE WALL SECTION
55 56	S3.17 S3.18	NORTH CORE WALL SECTION
57 58	S3.19 S3.20	NORTH CORE WALL SECTION SHEAR WALL ELEVATIONS
59	S3.21	SHEAR WALL ELEVATIONS
60	\$3.30	WALL ELEVATIONS
61 62	\$3.31 \$3.32	WALL ELEVATIONS WALL ELEVATIONS L-WING
63 64	\$3.33 \$3.50	WALL ELEVATIONS K-WING COLUMN SCHEDULE
65	S3.51	TYPICAL COLUMN DETAILS
66	S4.00	FOUNDATION DETAILS
67 68	\$4.01 \$4.02	FOUNDATION DETAILS GRADE BEAM ELEVATIONS
69	S4.03	FOUNDATION DETAILS
70 71	\$4.04 \$4.05	FOUNDATION DETAILS FOUNDATION DETAILS
72 73	\$4.06 \$4.07	FOUNDATION DETAILS FOUNDATION DETAILS
74	S4.08	FOUNDATION DETAILS
75 76	\$4.09 \$4.10	FOUNDATION DETAILS TYPICAL CONCRETE POST—TENSIONED GIRDER SCHEDULES
77 78	S4.11 S4.11A	TYPICAL CONCRETE POST—TENSIONED GIRDER SCHEDULES TYPICAL CONCRETE POST—TENSIONED GIRDER SCHEDULES
79	S4.12	TYPICAL CONCRETE POST—TENSIONED GIRDER SCHEDULES TYPICAL ONE WAY POST—TENSIONED DETAILS
80 81	S4.13 S4.14	POST-TENSIONED DETAILS
82 83	S4.15 S4.16	CONCRETE BEAM DETAILS CONCRETE BEAM DETAILS
84 85	S4.17	CONCRETE BEAM DETAILS CONCRETE BEAM DETAILS
86	\$4.18 \$4.20	TYPICAL CONCRETE JOIST AND BEAM DETAILS
87 88	S4.21 S4.22	TYPICAL CONCRETE DETAILS CONCRETE DETAILS
89 90	\$4.23 \$4.24	CONCRETE DETAILS CONCRETE DETAILS
91	S4.25	CONCRETE DETAILS
92 93	\$4.30 \$4.31	CONCRETE COUPLING BEAM DETAILS CONCRETE COUPLING BEAM DETAILS
94 95	S4.40 S4.41	TYPICAL COMPOSITE DECK DETAILS TYPICAL METAL DECK DETAILS
96	S4.50	TYPICAL STEEL DETAILS
97 98	\$4.51 \$4.52	STEEL DETAILS STEEL DETAILS
99 100	S4.53 S4.54	STEEL DETAILS STEEL DETAILS
101	S4.55	STEEL DETAILS
102 103	\$4.56 \$4.57	STEEL DETAILS STEEL DETAILS
104 105	S4.58 S4.59	STEEL DETAILS STEEL DETAILS
106	S4.60	CANOPY DETAILS
107 108	\$4.61 \$5.00	CANOPY DETAILS MISCELLANEOUS DETAILS
109 110	S5.10 S5.20	SKYBRIDGE DETAILS K-WING RETROFIT CONCRETE DETAILS
111	S5.30	PLAZA RETROFIT DETAILS
	S5.40	L WING COOLING TOWER DETAILS SCREEN WALL DETAILS
112 113	S5.41	SCILLIN WALL DETAILS
112 113 114	S5.50	MASONRY DETAILS
112 113		

DRAWING INDEX

GENERAL NOTES

GENERAL NOTES

S0.01

S0.02

GIFFIN • BOLTE • JURGENS p. A R C H I T E C T S

815 S.W. SECOND AVENUE · PORTLAND, OREGON 97204 (503) 223-0992 www.gbjarch.com FAX (503) 294-3961

MultiCare 1

EMERGENCY DEPARTMENT & CANCER CENTER EXPANSION

TACOMA, WASHINGTON

GENERAL NOTES

NO SCALE

Scale

Drawn By

S0