Spec. Sec.	Material	Manufacturer	Description		
05 4000	Cold-Formed Metal Framing				
	2 ½" x 16 Ga (1 5/8" Fl) Stud	CEMCO	Item #1		
	3 5/8" x 16 Ga (1 5/8" Fl) Stud	CEMCO	Item #1		
	3 5/8" x 16 Ga (2" Fl) Stud	CEMCO	Item #1		
	3 5/8" x 18Ga (1 5/8" Fl) Stud	CEMCO	Item #1		
	4" x 16 Ga (1 5/8" Fl) Stud	CEMCO	Item #1		
	4" x 16 Ga (2" Fl) Stud	CEMCO	Item #1		
	6" x 14 Ga (1 5/8" Fl) Stud	CEMCO	Item #1		
	6" x 16 Ga (1 5/8" Fl) Stud	CEMCO	Item #1		
	6" x 16 Ga (2" Fl) Stud	CEMCO	Item #1		
	6" x 18 Ga (1 5/8" Fl) Stud	CEMCO	Item #1		
	8" x 16Ga 1 5/8" F1 Stud	CEMCO	Item #1		
	10" x 16 Ga (1 1/2" Fl) Stud	CEMCO	Item #1		
	10" x 16 Ga (2" Fl) Stud	CEMCO	Item #1		
	2 1/2" x 14 Ga (1 ½" Fl) Track	CEMCO	Item #2		
	3 5/8" x 16 Ga (1 ½" Fl) Track	CEMCO	Item #2		
	3 5/8" x 18Ga (1 ½" Fl) Track	CEMCO	Item #2		
	4" x 16 Ga (1 ½" Fl) Track	CEMCO	Item #2		
	6" x 16 Ga (1 ½" Fl) Track	CEMCO	Item #2		
	6" x 18 Ga (1 ½" Fl) Track	CEMCO	Item #2		
	6" x 18 Ga (1 1/4" Fl) Track	CEMCO	Item #2		
	8" x 16Ga (1 ½" Fl) Track	CEMCO	Item #2		
	10" x 16 Ga (1 1/2" Fl) Track	CEMCO	Item #2		
	6" 16Ga Notch Track	CEMCO	Item #3		
	6" 18Ga Notch Track	CEMCO	Item #3		
	3 5/8" 16Ga Slotted track	CEMCO	Item #4		

6" 16Ga Slotted Track	CEMCO	Item #4
8" 16Ga Slotted Track	CEMCO	Item #4
3 5/8" 18Ga Slotted Track	CEMCO	Item #4
6" 18Ga Slotted Track	CEMCO	Item #4
1 ½" x 1 ½" x 16 Ga Angle	CEMCO	Item #5
2" x 2" x 16 Ga Angle	CEMCO	Item #5
3" x 3" x 16 Ga Angle	CEMCO	Item #5
2" x 2" x 12 Ga Angle	CEMCO	Item #5
4" x 16 Ga Flat Strap	CEMCO	Item #6
6" 12Ga Flat Strap	CEMCO	Item #6
6" 16Ga Flat Strap	CEMCO	Item #6
6" 18Ga Flat Strap	CEMCO	Item #6
1 ½" x 16 Ga Cold Rolled Channel	CEMCO	Item #7
Z Metal Furring Channel	CEMCO	Item #8
DriftTrak DTSLB	The Steel Network	Item #9
Hilti Screws, Fasteners & Anchors	Hilti	Item #10

ITEM #1

Corporate Headquarters

13191 Crossroads Parkway North, Suite 325 City of Industry, CA 91746 Phone: 800.775.2362 Fax: 626.330.7598

Manufacturing Facilities

City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA

Structural Engineering/Design

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598

Technical Services

263 North Covina Lane City of Industry, CA 91744 **Phone:** 800.416.2278 **Fax:** 626.249.5005

250S162-54 C-STUDS 54 MIL. (16 GA. STRUCTURAL)

Geometric Properties

250S162-54 "S" structural load-bearing studs are produced from hot-dipped galvanized steel in standard G60 coating. G90 is available upon special request, and may require up-charges and extended lead times.

Physical Properties

Model No.	Design Thickness (in)	Minimum Thickness (in)	Yield (ksi)	Coating ^{3,4}	Web Depth (in)	Flange Size (in)	Lip (in)
250S162-54	0.0566	0.0538	50	G60 ³	2-1/2	1-5/8	1/2

Notes:

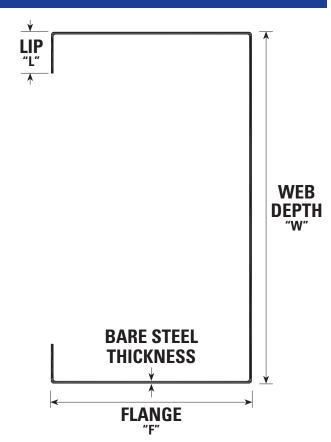
- 1. Uncoated steel thickness. Thickness is for carbon sheet steel.
- 2. Minimum thickness represents 95% of the design thickness and is the minimum acceptable thickness.
- 3. Per ASTM C955 & A1003, Table 1.
- 4. G90 available upon request. Will require extended lead time and upcharge.

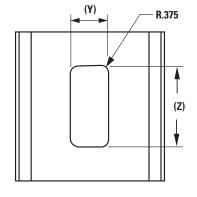
Color Code (painted on ends): 54-mil: Green

ASTM & Code Standards:

- ASTM A653/A653M, A924/A924M, A1003/1003, C955 & C1007
- ICC-ES & SFIA Code Compliance Certification Program
- ICC ESR-3016

- ATI CCRR-0224
- 2012 AISI
- 2012/2015 IBC
- 2010/2013 CBC
- LEED v3 for Building and Design Construction
- MR Credit 2: Construction Waste Management.
- MR Credit 4: Recycled Content.


LEED v4 for Building and Design Construction


- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.

- Total Recycled Content: 36.9% ■ Post-Consumer: 19.8%
- Pre-Consumer: 14.4%

CSI Division: 05.40.00 – Cold-Formed Metal Framing

Hole Detail

Standard Hole Centers are 24"	(Z) (in)	(Y) (in)
2-1/2" studs	2.000	0.750
3-1/2" to 14" studs	3.250	1.500

	Gro	oss			Effe	ective Pro	perties 50	ksi					Torsional	Properties	5	
Design Thickness (in)	Area (in) ²	Weight (lb/ft)	lx (in) ³	Sx (in) ³	Ma (in-k)	Vag (lb)	Vanet (lb)	Fya (ksi)	Lu (in)	Mnd (in-k)	Jx1000 (in) ⁴	Cw (in) ⁶	Xo (in)	m	Ro (in)	ß
0.0566	0.358	1.22	0.370	0.284	9.42	2353	565	55.4	33.9	15.84	0.383	0.223	-1.443	0.845	1.868	0.403

Notes:

- Web-height to thickness ratio exceeds 200. Web Stiffeners are requi0range at all support points and concentrated loads.
- Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2
- 3. For deflection calculations, use the effective moment of interia.
- 4. Mad = Mnd/1.67
- **5.** Allowable moment is lesser of Ma and Mad. Stud distortional buckling is based on an assumed $K\varphi=0$.

Technical Services

Corporate Headquarters

13191 Crossroads Parkway North, Suite 325 City of Industry, CA 91746 Phone: 800.775.2362 Fax: 626.330.7598

Manufacturing Facilities

City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA

Structural Engineering/Design

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598

Technical Services

263 North Covina Lane City of Industry, CA 91744 Phone: 800.416.2278 Fax: 626.249.5005

362S162-54 C-STUDS 54 MIL. (16 GA. STRUCTURAL)

Geometric Properties

362S162-54 "S" structural load-bearing studs are produced from hot-dipped galvanized steel in standard G60 coating. G90 is available upon special request, and may require up-charges and extended lead times.

Physical Properties

Model No.	Design Thickness (in)	Minimum Thickness (in)	Yield (ksi)	Coating ^{3,4}	Web Depth (in)	Flange Size (in)	Lip (in)
362S162-54	0.0566	0.0538	50	G60 ³	3-5/8	1-5/8	1/2

Notes:

- 1. Uncoated steel thickness. Thickness is for carbon sheet steel.
- 2. Minimum thickness represents 95% of the design thickness and is the minimum acceptable thickness.
- 3. Per ASTM C955 & A1003, Table 1.
- 4. G90 available upon request. Will require extended lead time and upcharge.

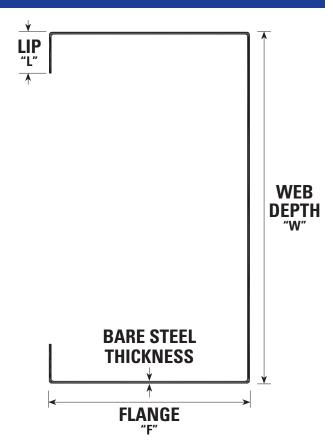
Color Code (painted on ends): 54-mil: Green

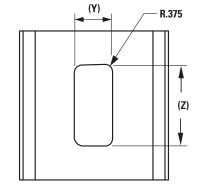
ASTM & Code Standards:

- ASTM A653/A653M, A924/A924M, A1003/1003, C955 & C1007
- ICC-ES & SFIA Code Compliance Certification Program
- ICC ESR-3016

- ATI CCRR-0224
- **2012 AISI**
- 2012/2015 IBC
- 2010/2013 CBC

LEED v3 for Building and Design Construction


- MR Credit 2: Construction Waste Management.
- MR Credit 4: Recycled Content.


LEED v4 for Building and Design Construction

- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.

- Total Recycled Content: 36.9% ■ Post-Consumer: 19.8% ■ Pre-Consumer: 14.4%
- **CSI Division:** 05.40.00 Cold-Formed Metal Framing

Hole Detail

Standard Hole Centers are 24"	(Z) (in)	(Y) (in)
2-1/2" studs	2.000	0.750
3-1/2" to 14" studs	3.250	1.500

	Gr	oss			Effe	ective Pro	perties 50	ksi					Torsional I	Properties	5	
Design Thickness (in)	Area (in) ²	Weight (lb/ft)	lx (in) ³	Sx (in) ³	Ma (in-k)	Vag (lb)	Vanet (lb)	Fya (ksi)	Lu (in)	Mnd (in-k)	Jx1000 (in) ⁴	Cw (in) ⁶	Xo (in)	m	Ro (in)	ß
0.0566	0.422	1.44	0.873	0.444	13.28	3372	1016	50	34.4	22.65	0.451	0.457	-1.283	0.774	2.020	0.597

- 1. Web-height to thickness ratio exceeds 200. Web Stiffeners are requiOrange at all support points and concentrated loads.
- 2. Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2
- 3. For deflection calculations, use the effective moment of interia
- 4. Mad = Mnd/1.67
- **5.** Allowable moment is lesser of Ma and Mad. Stud distortional buckling is based on an assumed $K\phi = 0$.

Technical Services

Corporate Headquarters

13191 Crossroads Parkway North, Suite 325 City of Industry, CA 91746 Phone: 800.775.2362 Fax: 626.330.7598 City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA

Manufacturing Facilities

Structural Engineering/Design

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598 Technical Services

263 North Covina Lane City of Industry, CA 91744 Phone: 800.416.2278 Fax: 626.249.5005

362S200-54 C-STUDS 54 MIL. (16 GA. STRUCTURAL)

Geometric Properties

362S200-54 "S" structural load-bearing studs are produced from hot-dipped galvanized steel in standard G60 coating. G90 is available upon special request, and may require up-charges and extended lead times.

Physical Properties

Model No.	Design Thickness (in)	Minimum Thickness (in)	Yield (ksi)	Coating ^{3,4}	Web Depth (in)	Flange Size (in)	Lip (in)
362S200-54	0.0566	0.0538	50	G60 ³	3-5/8	2	5/8

Notes:

- 1. Uncoated steel thickness. Thickness is for carbon sheet steel.
- 2. Minimum thickness represents 95% of the design thickness and is the minimum acceptable thickness.
- 3. Per ASTM C955 & A1003, Table 1.
- 4. G90 available upon request. Will require extended lead time and upcharge.

Color Code (painted on ends): 54-mil: Green

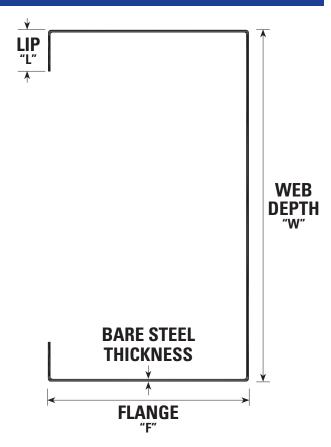
ASTM & Code Standards:

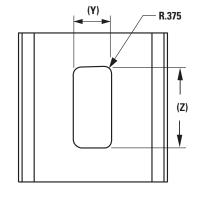
- ASTM A653/A653M, A924/A924M, A1003/1003, C955 & C1007
- ICC-ES & SFIA Code Compliance Certification Program
- ICC ESR-3016

- ATI CCRR-0224
- 2012 AISI
- 2012/2015 IBC
- 2010/2013 CBC

LEED v3 for Building and Design Construction

- MR Credit 2: Construction Waste Management.
- MR Credit 4: Recycled Content.


LEED v4 for Building and Design Construction


- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.

■ Total Recycled Content: 36.9%
■ Post-Consumer: 19.8%
■ Pre-Consumer: 14.4%

CSI Division: 05.40.00 – Cold-Formed Metal Framing

Hole Detail

Standard Hole Centers are 24"	(Z) (in)	(Y) (in)
2-1/2" studs	2.000	0.750
3-1/2" to 14" studs	3.250	1.500

	Gr	oss			Effe	ective Pro	perties 50	ksi					Torsional I	Properties	5	
Design Thickness (in)	Area (in) ²	Weight (lb/ft)	lx (in) ³	Sx (in) ³	Ma (in-k)	Vag (lb)	Vanet (lb)	Fya (ksi)	Lu (in)	Mnd (in-k)	Jx1000 (in) ⁴	Cw (in) ⁶	Xo (in)	m	Ro (in)	ß
0.0566	0.479	1.63	1.030	0.49	14.66	3372	1016	50	43.3	25.83	0.511	0.896	-1.715	1.016	2.382	0.482

Notes

- Web-height to thickness ratio exceeds 200. Web Stiffeners are requiOrange at all support points and concentrated loads.
- Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2
- 3. For deflection calculations, use the effective moment of interia.
- 4. Mad = Mnd/1.67
- **5.** Allowable moment is lesser of Ma and Mad. Stud distortional buckling is based on an assumed $K\varphi=0$.

Technical Services

Corporate Headquarters

13191 Crossroads Parkway North, Suite 325 City of Industry, CA 91746 Phone: 800.775.2362 Fax: 626.330.7598

City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA

Manufacturing Facilities

Structural Engineering/Design

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598

Technical Services

263 North Covina Lane City of Industry, CA 91744 Phone: 800.416.2278 Fax: 626.249.5005

362S162-43 C-STUDS 43 MIL. (18 GA. STRUCTURAL)

Geometric Properties

362S162-43 "S" structural load-bearing studs are produced from hot-dipped galvanized steel in standard G60 coating. G90 is available upon special request, and may require up-charges and extended lead times.

Physical Properties

Model No.	Design Thickness (in)	Minimum Thickness (in)	Yield (ksi)	Coating ^{3,4}	Web Depth (in)	Flange Size (in)	Lip (in)
362S162-43	0.0451	0.0428	33	G60 ³	3-5/8	1-5/8	1/2

Notes:

- 1. Uncoated steel thickness. Thickness is for carbon sheet steel.
- 2. Minimum thickness represents 95% of the design thickness and is the minimum acceptable thickness.
- 3. Per ASTM C955 & A1003, Table 1.
- 4. G90 available upon request. Will require extended lead time and upcharge.

Color Code (painted on ends): 43-mil: Yellow

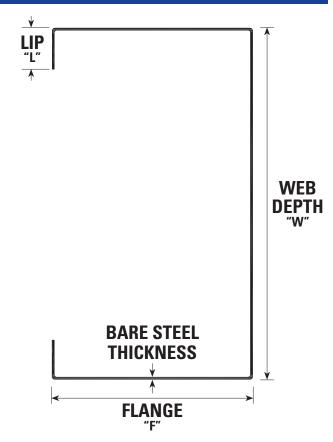
ASTM & Code Standards:

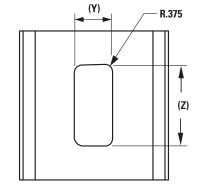
- ASTM A653/A653M, A924/A924M, A1003/1003, C955 & C1007
- ICC-ES & SFIA Code Compliance Certification Program
- ICC ESR-3016

- ATI CCRR-0224
- **2012 AISI**
- 2012/2015 IBC
- 2010/2013 CBC

LEED v3 for Building and Design Construction

- MR Credit 2: Construction Waste Management.
- MR Credit 4: Recycled Content.


LEED v4 for Building and Design Construction


- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.

■ Total Recycled Content: 36.9% ■ Post-Consumer: 19.8% ■ Pre-Consumer: 14.4%

CSI Division: 05.40.00 - Cold-Formed Metal Framing

Hole Detail

Standard Hole Centers are 24"	(Z) (in)	(Y) (in)
2-1/2" studs	2.000	0.750
3-1/2" to 14" studs	3.250	1.500

	Gro	oss		Effective Properties 50 ksi							Torsional Properties					
Design Thickness (in)	Area (in) ²	Weight (lb/ft)	lx (in) ³	Sx (in) ³	Ma (in-k)	Vag (lb)	Vanet (lb)	Fya (ksi)	Lu (in)	Mnd (in-k)	Jx1000 (in) ⁴	Cw (in) ⁶	Xo (in)	m	Ro (in)	ß
0.0451	0.340	1.16	0.710	0.372	7.34	1739	676	33.0	42.5	12.73	0.230	0.376	-1.297	0.782	2.036	0.594

Notes:

- 1. Web-height to thickness ratio exceeds 200. Web Stiffeners are requiOrange at all support points and concentrated loads.
- 2. Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2
- 3. For deflection calculations, use the effective moment of interia
- 4. Mad = Mnd/1.67
- **5.** Allowable moment is lesser of Ma and Mad. Stud distortional buckling is based on an assumed $K\phi = 0$.

Technical Services

Corporate Headquarters

13191 Crossroads Parkway North, Suite 325 City of Industry, CA 91746 Phone: 800.775.2362 Fax: 626.330.7598

Manufacturing Facilities

City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA

Structural Engineering/Design

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598

Technical Services

263 North Covina Lane City of Industry, CA 91744 **Phone:** 800.416.2278 **Fax:** 626.249.5005

400S162-54 C-STUDS 54 MIL. (16 GA. STRUCTURAL)

Geometric Properties

400S162-54 "S" structural load-bearing studs are produced from hot-dipped galvanized steel in standard G60 coating. G90 is available upon special request, and may require up-charges and extended lead times.

Physical Properties

Model No.	Design Thickness (in)	Minimum Thickness (in)	Yield (ksi)	Coating ^{3,4}	Web Depth (in)	Flange Size (in)	Lip (in)
400S162-54	0.0566	0.0538	50	G60 ³	4	1-5/8	1/2

Notes:

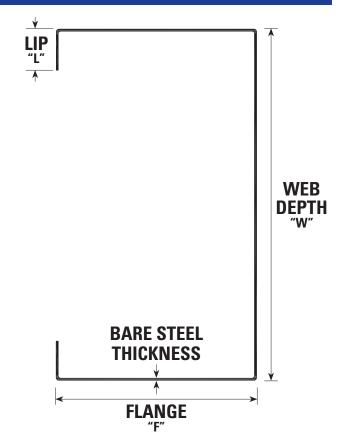
- 1. Uncoated steel thickness. Thickness is for carbon sheet steel.
- 2. Minimum thickness represents 95% of the design thickness and is the minimum acceptable thickness.
- 3. Per ASTM C955 & A1003, Table 1.
- 4. G90 available upon request. Will require extended lead time and upcharge.

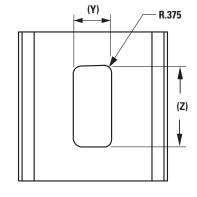
Color Code (painted on ends): 54-mil: Green

ASTM & Code Standards:

- ASTM A653/A653M, A924/A924M, A1003/1003, C955 & C1007
- ICC-ES & SFIA Code Compliance Certification Program
- ICC ESR-3016

- ATI CCRR-0224
- 2012 AISI
- 2012/2015 IBC
- 2010/2013 CBC
- LEED v3 for Building and Design Construction
- MR Credit 2: Construction Waste Management.
- MR Credit 4: Recycled Content.


LEED v4 for Building and Design Construction


- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.

■ Total Recycled Content: 36.9%
■ Post-Consumer: 19.8%
■ Pre-Consumer: 14.4%

CSI Division: 05.40.00 – Cold-Formed Metal Framing

Hole Detail

Standard Hole Centers are 24"	(Z) (in)	(Y) (in)
2-1/2" studs	2.000	0.750
3-1/2" to 14" studs	3.250	1.500

	Gr	oss .		Effective Properties 50 ksi							Torsional Properties					
Design Thickness (in)	Area (in) ²	Weight (lb/ft)	lx (in) ³	Sx (in) ³	Ma (in-k)	Vag (lb)	Vanet (lb)	Fya (ksi)	Lu (in)	Mnd (in-k)	Jx1000 (in) ⁴	Cw (in) ⁶	Xo (in)	m	Ro (in)	ß
0.0566	0.443	1.51	1.098	0.498	14.9	3372	1223	50	34.1	25.47	0.473	0.560	-1.238	0.754	2.090	0.649

Notes:

- Web-height to thickness ratio exceeds 200. Web Stiffeners are requiOrange at all support points and concentrated loads.
- Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2
- 3. For deflection calculations, use the effective moment of interia.
- 4. Mad = Mnd/1.67
- **5.** Allowable moment is lesser of Ma and Mad. Stud distortional buckling is based on an assumed $K\phi = 0$.

Technical Services

Corporate Headquarters

13191 Crossroads Parkway North, Suite 325 City of Industry, CA 91746 Phone: 800.775.2362 Fax: 626.330.7598

Manufacturing Facilities

City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA

Structural Engineering/Design

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598

Technical Services

263 North Covina Lane City of Industry, CA 91744 **Phone:** 800.416.2278 **Fax:** 626.249.5005

400S200-54 C-STUDS 54 MIL. (16 GA. STRUCTURAL)

Geometric Properties

400S200-54 "S" structural load-bearing studs are produced from hot-dipped galvanized steel in standard G60 coating. G90 is available upon special request, and may require up-charges and extended lead times.

Physical Properties

Model No.	Design Thickness (in)	Minimum Thickness (in)	Yield (ksi)	Coating ^{3,4}	Web Depth (in)	Flange Size (in)	Lip (in)
400S200-54	0.0566	0.0538	50	G60 ³	4	2	5/8

Notes:

- 1. Uncoated steel thickness. Thickness is for carbon sheet steel
- 2. Minimum thickness represents 95% of the design thickness and is the minimum acceptable thickness.
- 3. Per ASTM C955 & A1003, Table 1.
- 4. G90 available upon request. Will require extended lead time and upcharge.

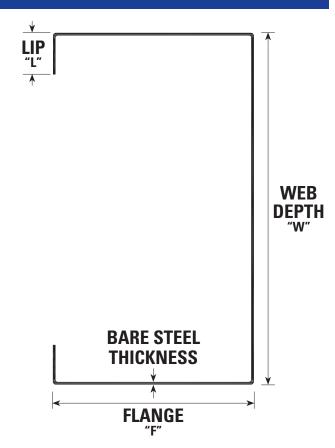
Color Code (painted on ends): 54-mil: Green

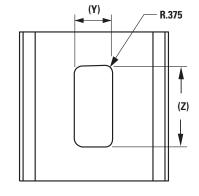
ASTM & Code Standards:

- ASTM A653/A653M, A924/A924M, A1003/1003, C955 & C1007
- ICC-ES & SFIA Code Compliance Certification Program
- ICC ESR-3016

- ATI CCRR-0224
- 2012 AISI
- 2012/2015 IBC
- 2010/2013 CBC

LEED v3 for Building and Design Construction


- MR Credit 2: Construction Waste Management.
- MR Credit 4: Recycled Content.


LEED v4 for Building and Design Construction

- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.

- Total Recycled Content: 36.9%
 Post-Consumer: 19.8%
 Pre-Consumer: 14.4%
- **CSI Division:** 05.40.00 Cold-Formed Metal Framing

Hole Detail

Standard Hole Centers are 24"	(Z) (in)	(Y) (in)
2-1/2" studs	2.000	0.750
3-1/2" to 14" studs	3.250	1.500

	Gro	oss		Effective Properties 50 ksi						Torsional Properties						
Design Thickness (in)	Area (in) ²	Weight (lb/ft)	lx (in) ³	Sx (in) ³	Ma (in-k)	Vag (lb)	Vanet (lb)	Fya (ksi)	Lu (in)	Mnd (in-k)	Jx1000 (in) ⁴	Cw (in) ⁶	Xo (in)	m	Ro (in)	ß
0.0566	0.500	1.70	1.292	0.549	16.43	3372	1223	50	42.9	28.88	0.534	1.083	-1.662	0.993	2.433	0.534

Notes:

- Web-height to thickness ratio exceeds 200. Web Stiffeners are requi0range at all support points and concentrated loads.
- Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2
- 3. For deflection calculations, use the effective moment of interia.
- 4. Mad = Mnd/1.67
- **5.** Allowable moment is lesser of Ma and Mad. Stud distortional buckling is based on an assumed $K\phi = 0$.

Technical Services

Corporate Headquarters

13191 Crossroads Parkway North, Suite 325 City of Industry, CA 91746 Phone: 800.775.2362 Fax: 626.330.7598

Manufacturing Facilities

City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA

Structural Engineering/Design

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598

Technical Services

263 North Covina Lane City of Industry, CA 91744 **Phone:** 800.416.2278 **Fax:** 626.249.5005

600S162-68 C-STUD 68 MIL (14 GA. STRUCTURAL)

Geometric Properties

600S162-68 "S" structural load-bearing studs are produced from hot-dipped galvanized steel in standard G60 coating. G90 is available upon special request, and may require up-charges and extended lead times.

Physical Properties

Model No.	Design Thickness (in)	Minimum Thickness (in)	Yield (ksi)	Coating ^{3,4}	Web Depth (in)	Flange Size (in)	Lip (in)
600S162-68	0.0713	0.0677	50	G60 ³	6	1-5/8	1/2

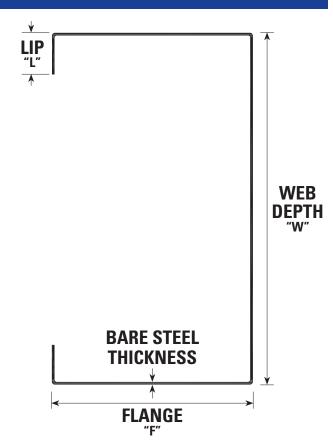
Notes:

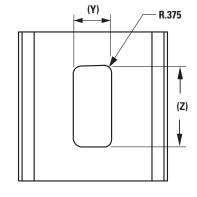
- 1. Uncoated steel thickness. Thickness is for carbon sheet steel
- 2. Minimum thickness represents 95% of the design thickness and is the minimum acceptable thickness.
- 3. Per ASTM C955 & A1003, Table 1.
- 4. G90 available upon request. Will require extended lead time and upcharge.

Color Code (painted on ends): 68-mil: Orange

ASTM & Code Standards:

- ASTM A653/A653M, A924/A924M, A1003/1003, C955 & C1007
- ICC-ES & SFIA Code Compliance Certification Program
- ICC ESR-3016


- ATI CCRR-0224
- 2012 AISI
- 2012/2015 IBC
- 2010/2013 CBC
- LEED v3 for Building and Design Construction
- MR Credit 2: Construction Waste Management.
- MR Credit 4: Recycled Content.


LEED v4 for Building and Design Construction

- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.

- Total Recycled Content: 36.9%
 Post-Consumer: 19.8%
 Pre-Consumer: 14.4%
- **CSI Division:** 05.40.00 Cold-Formed Metal Framing

Hole Detail

Standard Hole Centers are 24"	(Z) (in)	(Y) (in)
2-1/2" studs	2.000	0.750
3-1/2" to 14" studs	3.250	1.500

	Gr	oss		Effective Properties 50 ksi						Torsional Properties						
Design Thickness (in)	Area (in) ²	Weight (lb/ft)	lx (in) ³	Sx (in) ³	Ma (in-k)	Vag (lb)	Vanet (lb)	Fya (ksi)	Lu (in)	Mnd (in-k)	Jx1000 (in) ⁴	Cw (in) ⁶	Xo (in)	m	Ro (in)	ß
0.0713	0.693	2.36	3.525	1.164	39.47	5350	2879	56.6	30.8	59.60	1.174	1.626	-1.032	0.655	2.543	0.835

Notes

- Web-height to thickness ratio exceeds 200. Web Stiffeners are requiOrange at all support points and concentrated loads.
- Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2
- 3. For deflection calculations, use the effective moment of interia.
- 4. Mad = Mnd/1.67
- **5.** Allowable moment is lesser of Ma and Mad. Stud distortional buckling is based on an assumed $K\phi = 0$.

Technical Services

Corporate Headquarters

13191 Crossroads Parkway North, Suite 325 City of Industry, CA 91746 Phone: 800.775.2362 Fax: 626.330.7598

Manufacturing Facilities

City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA

Structural Engineering/Design

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598

Technical Services

263 North Covina Lane City of Industry, CA 91744 **Phone:** 800.416.2278 **Fax:** 626.249.5005

600S162-54 C-STUDS 54 MIL. (16 GA. STRUCTURAL)

Geometric Properties

600S162-54 "S" structural load-bearing studs are produced from hot-dipped galvanized steel in standard G60 coating. G90 is available upon special request, and may require up-charges and extended lead times.

Physical Properties

Model No.	Design Thickness (in)	Minimum Thickness (in)	Yield (ksi)	Coating ^{3,4}	Web Depth (in)	Flange Size (in)	Lip (in)
600S162-54	0.0566	0.0538	50	G60 ³	6	1-5/8	1/2

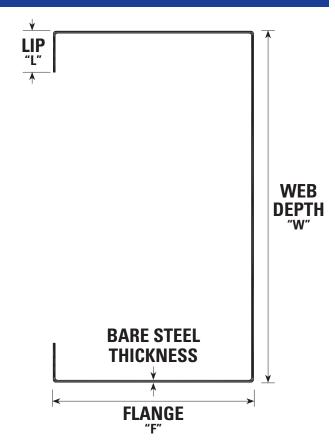
Notes:

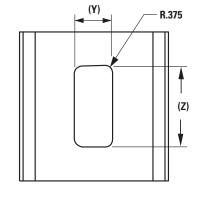
- 1. Uncoated steel thickness. Thickness is for carbon sheet steel
- 2. Minimum thickness represents 95% of the design thickness and is the minimum acceptable thickness.
- 3. Per ASTM C955 & A1003, Table 1.
- 4. G90 available upon request. Will require extended lead time and upcharge.

Color Code (painted on ends): 54-mil: Green

ASTM & Code Standards:

- ASTM A653/A653M, A924/A924M, A1003/1003, C955 & C1007
- ICC-ES & SFIA Code Compliance Certification Program
- ICC ESR-3016


- ATI CCRR-0224
- 2012 AISI
- 2012/2015 IBC
- 2010/2013 CBC
- LEED v3 for Building and Design Construction
- MR Credit 2: Construction Waste Management.
- MR Credit 4: Recycled Content.


LEED v4 for Building and Design Construction

- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.

- Total Recycled Content: 36.9%
 Post-Consumer: 19.8%
 Pre-Consumer: 14.4%
- **CSI Division:** 05.40.00 Cold-Formed Metal Framing

Hole Detail

Standard Hole Centers are 24"	(Z) (in)	(Y) (in)
2-1/2" studs	2.000	0.750
3-1/2" to 14" studs	3.250	1.500

	Gr	oss		Effective Properties 50 ksi							Torsional Properties						
Design Thickness (in)	Area (in) ²	Weight (lb/ft)	lx (in) ³	Sx (in) ³	Ma (in-k)	Vag (lb)	Vanet (lb)	Fya (ksi)	Lu (in)	Mnd (in-k)	Jx1000 (in) ⁴	Cw (in) ⁶	Xo (in)	m	Ro (in)	ß	
0.0566	0.556	1.89	2.860	0.916	30.33	2823	1947	55.3	31.4	43.25	0.594	1.337	-1.049	0.663	2.562	0.832	

Notes

- Web-height to thickness ratio exceeds 200. Web Stiffeners are requiOrange at all support points and concentrated loads.
- Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2
- 3. For deflection calculations, use the effective moment of interia.
- 4. Mad = Mnd/1.67
- **5.** Allowable moment is lesser of Ma and Mad. Stud distortional buckling is based on an assumed $K\phi = 0$.

Technical Services

Corporate Headquarters

13191 Crossroads Parkway North, Suite 325 City of Industry, CA 91746 Phone: 800.775.2362 Fax: 626.330.7598

Manufacturing Facilities

City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA

Structural Engineering/Design

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598

Technical Services

263 North Covina Lane City of Industry, CA 91744 **Phone:** 800.416.2278 **Fax:** 626.249.5005

600S200-54 C-STUDS 54 MIL. (16 GA. STRUCTURAL)

Geometric Properties

600S200-54 "S" structural load-bearing studs are produced from hot-dipped galvanized steel in standard G60 coating. G90 is available upon special request, and may require up-charges and extended lead times.

Physical Properties

Model No.	Design Thickness (in)	Minimum Thickness (in)	Yield (ksi)	Coating ^{3,4}	Web Depth (in)	Flange Size (in)	Lip (in)
600S200-54	0.0566	0.0538	50	G60 ³	6	2	5/8

Notes:

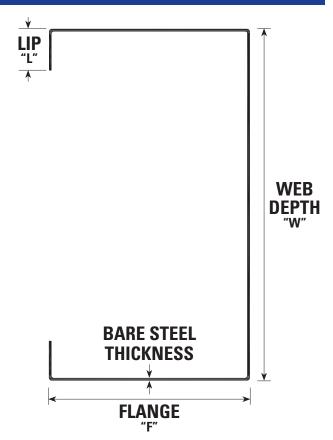
- 1. Uncoated steel thickness. Thickness is for carbon sheet steel.
- 2. Minimum thickness represents 95% of the design thickness and is the minimum acceptable thickness.
- 3. Per ASTM C955 & A1003, Table 1.
- 4. G90 available upon request. Will require extended lead time and upcharge.

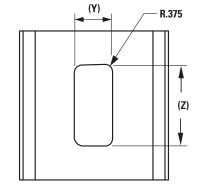
Color Code (painted on ends): 54-mil: Green

ASTM & Code Standards:

- ASTM A653/A653M, A924/A924M, A1003/1003, C955 & C1007
- ICC-ES & SFIA Code Compliance Certification Program
- ICC ESR-3016

- ATI CCRR-0224
- 2012 AISI
- 2012/2015 IBC
- 2010/2013 CBC
- LEED v3 for Building and Design Construction
- MR Credit 2: Construction Waste Management.
- MR Credit 4: Recycled Content.


LEED v4 for Building and Design Construction


- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.

■ Total Recycled Content: 36.9%
■ Post-Consumer: 19.8%
■ Pre-Consumer: 14.4%

CSI Division: 05.40.00 – Cold-Formed Metal Framing

Hole Detail

Standard Hole Centers are 24"	(Z) (in)	(Y) (in)
2-1/2" studs	2.000	0.750
3-1/2" to 14" studs	3.250	1.500

	Gro	oss	Effective Properties 50 ksi							Torsional Properties						
Design Thickness (in)	Area (in) ²	Weight (lb/ft)	lx (in) ³	Sx (in) ³	Ma (in-k)	Vag (lb)	Vanet (lb)	Fya (ksi)	Lu (in)	Mnd (in-k)	Jx1000 (in) ⁴	Cw (in) ⁶	Xo (in)	m	Ro (in)	ß
0.0566	0.613	2.09	3.319	1.015	30.4	2823	1947	50	41.6	45.71	0.655	2.493	-1.432	0.887	2.829	0.744

Notes:

- Web-height to thickness ratio exceeds 200. Web Stiffeners are requi0range at all support points and concentrated loads.
- Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2
- 3. For deflection calculations, use the effective moment of interia.
- 4. Mad = Mnd/1.67
- **5.** Allowable moment is lesser of Ma and Mad. Stud distortional buckling is based on an assumed $K\varphi=0$.

Technical Services

Corporate Headquarters

13191 Crossroads Parkway North, Suite 325 City of Industry, CA 91746 Phone: 800.775.2362 Fax: 626.330.7598 City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA

Manufacturing Facilities

Structural Engineering/Design

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598

Technical Services

263 North Covina Lane City of Industry, CA 91744 **Phone:** 800.416.2278 **Fax:** 626.249.5005

600S162-43 C-STUDS 43 MIL. (18 GA. STRUCTURAL)

Geometric Properties

600S162-43 "S" structural load-bearing studs are produced from hot-dipped galvanized steel in standard G60 coating. G90 is available upon special request, and may require up-charges and extended lead times.

Physical Properties

Model No.	Design Thickness (in)	Minimum Thickness (in)	Yield (ksi)	Coating ^{3,4}	Web Depth (in)	Flange Size (in)	Lip (in)
600S162-43	0.0451	0.0428	33	G60 ³	6	1-5/8	1/2

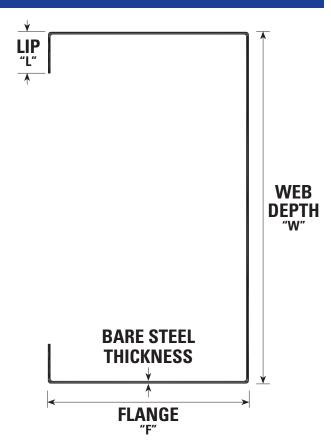
Notes:

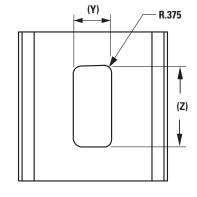
- 1. Uncoated steel thickness. Thickness is for carbon sheet steel.
- 2. Minimum thickness represents 95% of the design thickness and is the minimum acceptable thickness.
- 3. Per ASTM C955 & A1003, Table 1.
- 4. G90 available upon request. Will require extended lead time and upcharge.

Color Code (painted on ends): 43-mil: Yellow

ASTM & Code Standards:

- ASTM A653/A653M, A924/A924M, A1003/1003, C955 & C1007
- ICC-ES & SFIA Code Compliance Certification Program
- ICC ESR-3016


- ATI CCRR-0224
- 2012 AISI
- 2012/2015 IBC
- 2010/2013 CBC
- LEED v3 for Building and Design Construction
- MR Credit 2: Construction Waste Management.
- MR Credit 4: Recycled Content.


LEED v4 for Building and Design Construction

- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.

- Total Recycled Content: 36.9%
 Post-Consumer: 19.8%
 Pre-Consumer: 14.4%
- **CSI Division:** 05.40.00 Cold-Formed Metal Framing

Hole Detail

Standard Hole Centers are 24"	(Z) (in)	(Y) (in)
2-1/2" studs	2.000	0.750
3-1/2" to 14" studs	3.250	1.500

	Gr	oss		Effective Properties 33 ksi							Torsional Properties						
Design Thickness (in)	Area (in) ²	Weight (lb/ft)	lx (in) ³	Sx (in) ³	Ma (in-k)	Vag (lb)	Vanet (lb)	Fya (ksi)	Lu (in)	Mnd (in-k)	Jx1000 (in) ⁴	Cw (in) ⁶	Xo (in)	m	Ro (in)	ß	
0.0451	0.447	1.52	2.316	0.767	16.68	1416	1240	36.3	39	24.16	0.303	1.095	-1.062	0.670	2.577	0.830	

Notes

- Web-height to thickness ratio exceeds 200. Web Stiffeners are requiOrange at all support points and concentrated loads.
- Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2
- 3. For deflection calculations, use the effective moment of interia.
- 4. Mad = Mnd/1.67
- **5.** Allowable moment is lesser of Ma and Mad. Stud distortional buckling is based on an assumed $K\phi = 0$.

Technical Services

Corporate Headquarters

13191 Crossroads Parkway North, Suite 325 City of Industry, CA 91746 Phone: 800.775.2362 Fax: 626.330.7598

Manufacturing Facilities

City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA

Structural Engineering/Design

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598

Technical Services

263 North Covina Lane City of Industry, CA 91744 **Phone:** 800.416.2278 **Fax:** 626.249.5005

800S162-54 C-STUDS 54 MIL. (16 GA. STRUCTURAL)

Geometric Properties

800S162-54 "S" structural load-bearing studs are produced from hot-dipped galvanized steel in standard G60 coating. G90 is available upon special request, and may require up-charges and extended lead times.

Physical Properties

Model No.	Design Thickness (in)	Minimum Thickness (in)	Yield (ksi)	Coating ^{3,4}	Web Depth (in)	Flange Size (in)	Lip (in)
800S162-54	0.0566	0.0538	50	G60 ³	8	1-5/8	1/2

Notes:

- 1. Uncoated steel thickness. Thickness is for carbon sheet steel
- 2. Minimum thickness represents 95% of the design thickness and is the minimum acceptable thickness.
- 3. Per ASTM C955 & A1003, Table 1.
- 4. G90 available upon request. Will require extended lead time and upcharge.

Color Code (painted on ends): 54-mil: Green

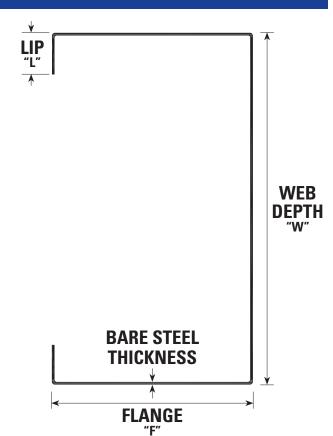
ASTM & Code Standards:

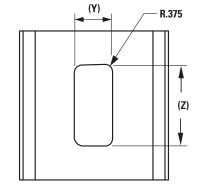
- ASTM A653/A653M, A924/A924M, A1003/1003, C955 & C1007
- ICC-ES & SFIA Code Compliance Certification Program
- ICC ESR-3016

- ATI CCRR-0224
- 2012 AISI
- 2012/2015 IBC
- 2010/2013 CBC
- 100 E011 3010

LEED v3 for Building and Design Construction

- MR Credit 2: Construction Waste Management.
- MR Credit 4: Recycled Content.


LEED v4 for Building and Design Construction


- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.

- Total Recycled Content: 36.9% ■ Post-Consumer: 19.8%
- Pre-Consumer: 14.4%

CSI Division: 05.40.00 – Cold-Formed Metal Framing

Hole Detail

Standard Hole Centers are 24"	(Z) (in)	(Y) (in)
2-1/2" studs	2.000	0.750
3-1/2" to 14" studs	3.250	1.500

	Gro	DSS		Effective Properties 50 ksi								Torsional Properties					
Design Thickness (in)	Area (in) ²	Weight (lb/ft)	lx (in) ³	Sx (in) ³	Ma (in-k)	Vag (lb)	Vanet (lb)	Fya (ksi)	Lu (in)	Mnd (in-k)	Jx1000 (in) ⁴	Cw (in) ⁶	Xo (in)	m	Ro (in)	ß	
0.0566	0.670	2.28	5.600	1.229	36.79	2091	2091	50	32.1	54.79	0.715	2.539	-0.914	0.594	3.113	0.914	

Notes:

- Web-height to thickness ratio exceeds 200. Web Stiffeners are requiOrange at all support points and concentrated loads.
- Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2
- 3. For deflection calculations, use the effective moment of interia.
- 4. Mad = Mnd/1.67
- **5.** Allowable moment is lesser of Ma and Mad. Stud distortional buckling is based on an assumed $K\phi = 0$.

Technical Services

Corporate Headquarters

13191 Crossroads Parkway North, Suite 325 City of Industry, CA 91746 Phone: 800.775.2362 Fax: 626.330.7598

Manufacturing Facilities

City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA

Structural Engineering/Design

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598

Technical Services

263 North Covina Lane City of Industry, CA 91744 **Phone:** 800.416.2278 **Fax:** 626.249.5005

1000S162-54 C-STUDS 54 MIL. (16 GA. STRUCTURAL)

Geometric Properties

1000S162-54 "S" structural load-bearing studs are produced from hot-dipped galvanized steel in standard G60 coating. G90 is available upon special request, and may require up-charges and extended lead times.

Physical Properties

Model No.	Design Thickness (in)	Minimum Thickness (in)	Yield (ksi)	Coating ^{3,4}	Web Depth (in)	Flange Size (in)	Lip (in)
1000S162-54	0.0566	0.0538	50	G60 ³	10	1-5/8	1/2

Notes:

- 1. Uncoated steel thickness. Thickness is for carbon sheet steel
- 2. Minimum thickness represents 95% of the design thickness and is the minimum acceptable thickness.
- 3. Per ASTM C955 & A1003, Table 1.
- 4. G90 available upon request. Will require extended lead time and upcharge.

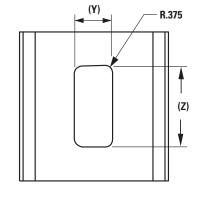
Color Code (painted on ends): 54-mil: Green

ASTM & Code Standards:

- ASTM A653/A653M, A924/A924M, A1003/1003, C955 & C1007
- ICC-ES & SFIA Code Compliance Certification Program
- ICC ESR-3016

- ATI CCRR-0224
- 2012 AISI
- 2012/2015 IBC
- 2010/2013 CBC
- LEED v3 for Building and Design Construction
- MR Credit 2: Construction Waste Management.
- MR Credit 4: Recycled Content.

LEED v4 for Building and Design Construction


- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.

■ Total Recycled Content: 36.9%
■ Post-Consumer: 19.8%
■ Pre-Consumer: 14.4%

CSI Division: 05.40.00 – Cold-Formed Metal Framing

Hole Detail

Standard Hole Centers are 24"	(Z) (in)	(Y) (in)
2-1/2" studs	2.000	0.750
3-1/2" to 14" studs	3.250	1.500

	Gr	OSS			Effe	ective Pro	perties 50	ksi			Torsional Properties					
Design Thickness (in)	Area (in) ²	Weight (lb/ft)	lx (in) ³	Sx (in) ³	Ma (in-k)	Vag (lb)	Vanet (lb)	Fya (ksi)	Lu (in)	Mnd (in-k)	Jx1000 (in) ⁴	Cw (in) ⁶	Xo (in)	m	Ro (in)	ß
0.0566	0.783	2.66	9.391	1.572	47.07	1661	1661	50	31.3	67.42	0.836	4.198	-0.812	0.538	3.692	0.952

Notes

- Web-height to thickness ratio exceeds 200. Web Stiffeners are requi0range at all support points and concentrated loads.
- Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2
- 3. For deflection calculations, use the effective moment of interia.
- 4. Mad = Mnd/1.67
- **5.** Allowable moment is lesser of Ma and Mad. Stud distortional buckling is based on an assumed $K\phi = 0$.

Technical Services

Corporate Headquarters

13191 Crossroads Parkway North, Suite 325 City of Industry, CA 91746 Phone: 800.775.2362 Fax: 626.330.7598

Manufacturing Facilities

City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA

Structural Engineering/Design

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598

Technical Services

263 North Covina Lane City of Industry, CA 91744 **Phone:** 800.416.2278 **Fax:** 626.249.5005

1000S200-54 C-STUDS 54 MIL. (16 GA. STRUCTURAL)

Geometric Properties

1000S200-54 "S" structural load-bearing studs are produced from hot-dipped galvanized steel in standard G60 coating. G90 is available upon special request, and may require up-charges and extended lead times.

Physical Properties

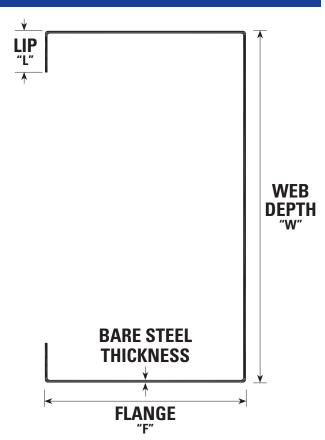
Model No.	Design Thickness (in)	Minimum Thickness (in)	Yield (ksi)	Coating ^{3,4}	Web Depth (in)	Flange Size (in)	Lip (in)
1000S200-54	0.0566	0.0538	50	G60 ³	10	2	5/8

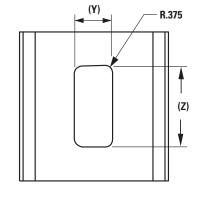
Notes:

- 1. Uncoated steel thickness. Thickness is for carbon sheet steel
- 2. Minimum thickness represents 95% of the design thickness and is the minimum acceptable thickness.
- 3. Per ASTM C955 & A1003, Table 1.
- 4. G90 available upon request. Will require extended lead time and upcharge.

Color Code (painted on ends): 54-mil: Green

ASTM & Code Standards:


- ASTM A653/A653M, A924/A924M, A1003/1003, C955 & C1007
- ICC-ES & SFIA Code Compliance Certification Program
- ICC ESR-3016 (Pending)
- ATI CCRR-0224
- 2012 AISI
- 2012/2015 IBC
- 2010/2013 CBC
- **LEED v3 for Building and Design Construction**
- MR Credit 2: Construction Waste Management.
- MR Credit 4: Recycled Content.


LEED v4 for Building and Design Construction

- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.

- Total Recycled Content: 36.9%
 Post-Consumer: 19.8%
 Pre-Consumer: 14.4%
- **CSI Division:** 05.40.00 Cold-Formed Metal Framing

Hole Detail

Standard Hole Centers are 24"	(Z) (in)	(Y) (in)
2-1/2" studs	2.000	0.750
3-1/2" to 14" studs	3.250	1.500

	Gro	oss			Effe	ective Pro	perties 50	ksi			Torsional Properties					
Design Thickness (in)	Area (in) ²	Weight (lb/ft)	lx (in) ³	Sx (in) ³	Ma (in-k)	Vag (lb)	Vanet (lb)	Fya (ksi)	Lu (in)	Mnd (in-k)	Jx1000 (in) ⁴	Cw (in) ⁶	Xo (in)	m	Ro (in)	ß
0.0566	0.839	2.86	10.769	1.705	51.05	1661	1661	50	39.8	77.89	0.896	7.665	-1.135	0.737	3.896	0.915

Notes:

- Web-height to thickness ratio exceeds 200. Web Stiffeners are requi0range at all support points and concentrated loads.
- Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2
- 3. For deflection calculations, use the effective moment of interia.
- 4. Mad = Mnd/1.67
- **5.** Allowable moment is lesser of Ma and Mad. Stud distortional buckling is based on an assumed $K\phi = 0$.

Technical Services

ITEM #2

Corporate Headquarters

Fax: 626.330.7598

13191 Crossroads Parkway North, Suite 325 City of Industry, CA 91746 **Phone:** 800.775.2362

Manufacturing Facilities

City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA

Structural Engineering/Design

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598

BARE STEEL

THICKNESS

Technical Services

263 North Covina Lane City of Industry, CA 91744 **Phone:** 800.416.2278 **Fax:** 626.249.5005

DEPTH

250T150-68 "T" UN-PUNCHED TRACK (14 Ga. STRUCTURAL)

Geometric Properties

"T" tracks are fabricated in 68-mil thick galvanized steel in standard G60 coating weight. G90 is available upon special request, and may require up-charges and extended lead times.

Physical Properties

Model No.	Design Thickness (in)	Minimum Thickness (in)	Yield (ksi)	Coating ^{3,4}	Web Depth (in)	Leg Size (in)
250T150-68	0.0713	0.0677	50	G60 ³	2-1/2	1-1/2

Notes:

- 1. Uncoated steel thickness. Thickness is for carbon sheet steel.
- 2. Minimum thickness represents 95% of the design thickness and is the minimum acceptable thickness.
- 3. Per ASTM C955 & A1003, Table 1.
- 4. G90 available upon request. Will require extended lead time and upcharge.

Color Code (painted on ends): 68-mil: Orange

ASTM & Code Standards:

- ASTM A653/A653M, A924/A924M, A1003/1003, C955 & C1007
- ICC-ES & SFIA Code Compliance Certification Program
- ICC ESR-3016
- ATI CCRR-0224

- 2012 AISI
- 2012/2015 IBC
 - 2010/2013 CBC

LEED v3 for Building and Design Construction

- MR Credit 2: Construction Waste Management.
- MR Credit 4: Recycled Content.

LEED v4 for Building and Design Construction

- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.

- Total Recycled Content: 36.9%
- Post-Consumer: 19.8%
- Pre-Consumer: 14.4%

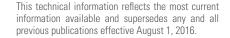
CSI Division: 05.40.00 – Cold-Formed Metal Framing

250T150-68 "T" Un-Punched Track

	Gr	OSS		Ef	fective Pro	perties 50 k	si		Torsional Properties				
Design Thickness (in)	Area (in) ²	Weight (lb/ft)	lx (in) ³	Sx (in) ³	Ma (in-k)	Vag (lb)	Fya (ksi)	Jx1000 (in) ⁴	Cw (in) ⁶	Xo (in)	m	Ro (in)	ß
0.0713	0.391	1.33	0.445	0.276	8.27	3199	50	0.663	0.114	-0.953	0.561	1.531	0.613

Notes

- Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2.
- 2. For deflection calculations, use the effective moment of inertia.
- 3. Web-height to thickness ratio exceeds 200. Web Stiffeners are required at all support points and concentrated loads.


4. Flange Width to thickness ratio exceeds 60, therefore it does not comply with code and only Gross Properties are calculated.

Technical Services

Corporate Headquarters

13191 Crossroads Parkway North, Suite 325 City of Industry, CA 91746 Phone: 800.775.2362 Fax: 626.330.7598

Manufacturing Facilities

City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA

Structural Engineering/Design

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598

BARE STEEL

THICKNESS

Technical Services

263 North Covina Lane City of Industry, CA 91744 **Phone:** 800.416.2278 **Fax:** 626.249.5005

DEPTH

362T150-54 "T" UN-PUNCHED TRACK (16 Ga. STRUCTURAL)

Geometric Properties

"T" tracks are fabricated in 54-mil thick galvanized steel in standard G60 coating weight. G90 is available upon special request, and may require up-charges and extended lead times.

Physical Properties

Model No.	Design Thickness (in)	Minimum Thickness (in)	Yield (ksi)	Coating ^{3,4}	Web Depth (in)	Leg Size (in)
362T150-54	0.0566	0.0538	50	G60 ³	3-5/8	1-1/2

Notes:

- 1. Uncoated steel thickness. Thickness is for carbon sheet steel.
- 2. Minimum thickness represents 95% of the design thickness and is the minimum acceptable thickness.
- 3. Per ASTM C955 & A1003, Table 1.
- 4. G90 available upon request. Will require extended lead time and upcharge.

Color Code (painted on ends): 54-mil: Green

ASTM & Code Standards:

- ASTM A653/A653M, A924/A924M, A1003/1003, C955 & C1007
- ICC-ES & SFIA Code Compliance Certification Program
- ICC ESR-3016
- ATI CCRR-0224

- 2012 AISI
- 2012/2015 IBC
- 2010/2013 CBC

LEED v3 for Building and Design Construction

- MR Credit 2: Construction Waste Management.
- MR Credit 4: Recycled Content.

LEED v4 for Building and Design Construction

- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.

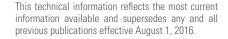
- Total Recycled Content: 36.9%
- Post-Consumer: 19.8%
- Pre-Consumer: 14.4%

CSI Division: 05.40.00 – Cold-Formed Metal Framing

362T150-54 "T" Un-Punched Track

	Gr	oss .	Effective Properties 50 ksi						Torsional Properties				
Design Thickness (in)	Area (in) ²	Weight (lb/ft)	lx (in) ³	Sx (in) ³	Ma (in-k)	Vag (lb)	Fya (ksi)	Jx1000 (in) ⁴	Cw (in) ⁶	Xo (in)	m	Ro (in)	ß
0.0566	0.374	1.27	0.735	0.325	9.74	3372	50	0.400	0.202	-0.844	0.516	1.768	0.772

Notes


- 1. Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2.
- 2. For deflection calculations, use the effective moment of inertia.
- 3. Web-height to thickness ratio exceeds 200. Web Stiffeners are required at all support points and concentrated loads.
- 4. Flange Width to thickness ratio exceeds 60, therefore it does not comply with code and only Gross Properties are calculated.

Technical Services

Corporate Headquarters

13191 Crossroads Parkway North, Suite 325 City of Industry, CA 91746 Phone: 800.775.2362 Fax: 626.330.7598 Manufacturing Facilities

City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA

Structural Engineering/Design

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598

BARE STEEL

THICKNESS

Technical Services

263 North Covina Lane City of Industry, CA 91744 **Phone:** 800.416.2278 **Fax:** 626.249.5005

DEPTH

362T150-43 "T" UN-PUNCHED TRACK (18 Ga. STRUCTURAL)

Geometric Properties

"T" tracks are fabricated in 43-mil thick galvanized steel in standard G60 coating weight. G90 is available upon special request, and may require up-charges and extended lead times.

Physical Properties

Model No.	Design Thickness (in)	Minimum Thickness (in)	Yield (ksi)	Coating ^{3,4}	Web Depth (in)	Leg Size (in)
362T150-43	0.0451	0.0428	33	G60 ³	3-5/8	1-1/2

Notes:

- 1. Uncoated steel thickness. Thickness is for carbon sheet steel.
- 2. Minimum thickness represents 95% of the design thickness and is the minimum acceptable thickness.
- 3. Per ASTM C955 & A1003, Table 1.
- 4. G90 available upon request. Will require extended lead time and upcharge.

Color Code (painted on ends): 43-mil: Yellow

ASTM & Code Standards:

- ASTM A653/A653M, A924/A924M, A1003/1003, C955 & C1007
- ICC-ES & SFIA Code Compliance Certification Program
- ICC ESR-3016
- ATI CCRR-0224

- 2012 AISI
- 2012/2015 IBC
- 2010/2013 CBC

LEED v3 for Building and Design Construction

- MR Credit 2: Construction Waste Management.
- MR Credit 4: Recycled Content.

LEED v4 for Building and Design Construction

- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.

■ Total Recycled Content: 36.9%

■ Post-Consumer: 19.8% ■ Pre-Consumer: 14.4%

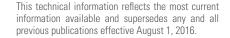
CSI Division: 05.40.00 – Cold-Formed Metal Framing

362T150-43 "T" Un-Punched Track

	Gr	oss	Effective Properties 33 ksi						Torsional Properties				
Design Thickness (in)	Area (in) ²	Weight (lb/ft)	lx (in) ³	Sx (in) ³	Ma (in-k)	Vag (lb)	Fya (ksi)	Jx1000 (in) ⁴	Cw (in) ⁶	Xo (in)	m	Ro (in)	ß
0.0451	0.298	1.02	0.574	0.255	5.04	1739	33.0	0.202	0.160	-0.850	0.519	1.766	0.768

Notes

- 1. Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2.
- 2. For deflection calculations, use the effective moment of inertia.
- 3. Web-height to thickness ratio exceeds 200. Web Stiffeners are required at all support points and concentrated loads.


4. Flange Width to thickness ratio exceeds 60, therefore it does not comply with code and only Gross Properties are calculated.

Technical Services

Fax: 626.330.7598

Corporate Headquarters 13191 Crossroads Parkway North, Suite 325 City of Industry, CA 91746 Phone: 800.775.2362

Manufacturing Facilities City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA

Structural Engineering/Design 1001-A Pittsburgh Antioch Hwy

Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598

Technical Services

263 North Covina Lane City of Industry, CA 91744 Phone: 800.416.2278 Fax: 626.249.5005

400T150-54 "T" UN-PUNCHED TRACK (16 Ga. STRUCTURAL)

Geometric Properties

"T" tracks are fabricated in 54-mil thick galvanized steel in standard G60 coating weight. G90 is available upon special request, and may require up-charges and extended lead times.

Physical Properties

Model No.	Design Thickness (in)	Minimum Thickness (in)	Yield (ksi)	Coating ^{3,4}	Web Depth (in)	Leg Size (in)
400T150-54	0.0566	0.0538	50	G60 ³	4	1-1/2

Notes:

- 1. Uncoated steel thickness. Thickness is for carbon sheet steel.
- 2. Minimum thickness represents 95% of the design thickness and is the minimum acceptable thickness.
- 3. Per ASTM C955 & A1003. Table 1.
- 4. G90 available upon request. Will require extended lead time and upcharge.

Color Code (painted on ends): 54-mil: Green

ASTM & Code Standards:

- ASTM A653/A653M A924/A924M A1003/1003 C955 & C1007
- ICC-ES & SFIA Code Compliance Certification Program
- ICC ESR-3016
- ATI CCRR-0224

- 2012 AISI
- 2012/2015 IBC
- 2010/2013 CBC

LEED v3 for Building and Design Construction

- MR Credit 2: Construction Waste Management.
- MR Credit 4: Recycled Content.

LEED v4 for Building and Design Construction

- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.

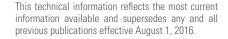
- Total Recycled Content: 36.9%
- Post-Consumer: 19.8%
- Pre-Consumer: 14.4%

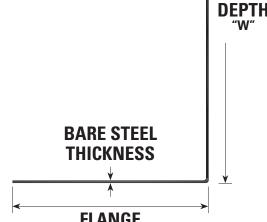
CSI Division: 05.40.00 – Cold-Formed Metal Framing

400T150-54 "T" Un-Punched Track

Gross				Effective Properties 50 ksi						Torsional Properties			
Design Thickness (in)	Area (in) ²	Weight (lb/ft)	lx (in) ³	Sx (in) ³	Ma (in-k)	Vag (lb)	Fya (ksi)	Jx1000 (in) ⁴	Cw (in) ⁶	Xo (in)	m	Ro (in)	ß
0.0566	0.396	1.35	0.918	0.374	11.19	3372	50	0.422	0.252	-0.811	0.501	1.860	0.810

- 1. Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2.
- 2. For deflection calculations, use the effective moment of inertia.
- 3. Web-height to thickness ratio exceeds 200. Web Stiffeners are required at all support points and concentrated loads.


4. Flange Width to thickness ratio exceeds 60, therefore it does not comply with code and only Gross Properties are calculated.


Technical Services

Corporate Headquarters

13191 Crossroads Parkway North, Suite 325 City of Industry, CA 91746 Phone: 800.775.2362 Fax: 626.330.7598

Manufacturing Facilities

City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA

Structural Engineering/Design

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598

BARE STEEL

THICKNESS

Technical Services

263 North Covina Lane City of Industry, CA 91744 **Phone:** 800.416.2278 **Fax:** 626.249.5005

DEPTH

600T150-54 "T" UN-PUNCHED TRACK (16 Ga. STRUCTURAL)

Geometric Properties

"T" tracks are fabricated in 54-mil thick galvanized steel in standard G60 coating weight. G90 is available upon special request, and may require up-charges and extended lead times.

Physical Properties

Model No.	Design Thickness (in)	Minimum Thickness (in)	Yield (ksi)	Coating ^{3,4}	Web Depth (in)	Leg Size (in)
600T150-54	0.0566	0.0538	50	G60 ³	6	1-1/2

Notes:

- 1. Uncoated steel thickness. Thickness is for carbon sheet steel.
- 2. Minimum thickness represents 95% of the design thickness and is the minimum acceptable thickness.
- 3. Per ASTM C955 & A1003, Table 1.
- 4. G90 available upon request. Will require extended lead time and upcharge.

Color Code (painted on ends): 54-mil: Green

ASTM & Code Standards:

- ASTM A653/A653M, A924/A924M, A1003/1003, C955 & C1007
- ICC-ES & SFIA Code Compliance Certification Program
- ICC ESR-3016
- ATI CCRR-0224

- 2012 AISI
- 2012/2015 IBC
- 2010/2013 CBC

LEED v3 for Building and Design Construction

- MR Credit 2: Construction Waste Management.
- MR Credit 4: Recycled Content.

LEED v4 for Building and Design Construction

- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.

- Total Recycled Content: 36.9%
- Post-Consumer: 19.8%
- Pre-Consumer: 14.4%

CSI Division: 05.40.00 – Cold-Formed Metal Framing

600T150-54 "T" Un-Punched Track

	Gross			Effective Properties 50 ksi						Torsional Properties			
Design Thickness (in)	Area (in) ²	Weight (lb/ft)	lx (in) ³	Sx (in) ³	Ma (in-k)	Vag (lb)	Fya (ksi)	Jx1000 (in) ⁴	Cw (in) ⁶	Xo (in)	m	Ro (in)	ß
0.0566	0.509	1.73	2.400	0.609	18.24	2728	50	0.543	0.632	-0.675	0.434	2.401	0.921

Notes

- 1. Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2.
- 2. For deflection calculations, use the effective moment of inertia.
- 3. Web-height to thickness ratio exceeds 200. Web Stiffeners are required at all support points and concentrated loads.
- 4. Flange Width to thickness ratio exceeds 60, therefore it does not comply with code and only Gross Properties are calculated.

Technical Services

Corporate Headquarters

13191 Crossroads Parkway North, Suite 325 City of Industry, CA 91746 Phone: 800.775.2362 Fax: 626.330.7598

Manufacturing Facilities

City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA

Structural Engineering/Design

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598

BARE STEEL

THICKNESS

Technical Services

263 North Covina Lane City of Industry, CA 91744 **Phone:** 800.416.2278 **Fax:** 626.249.5005

DEPTH

600T150-43 "T" UN-PUNCHED TRACK (18 Ga. STRUCTURAL)

Geometric Properties

"T" tracks are fabricated in 43-mil thick galvanized steel in standard G60 coating weight. G90 is available upon special request, and may require up-charges and extended lead times.

Physical Properties

Model No.	Design Thickness (in)	Minimum Thickness (in)	Yield (ksi)	Coating ^{3,4}	Web Depth (in)	Leg Size (in)
600T150-43	0.0451	0.0428	33	G60 ³	6	1-1/2

Notes:

- 1. Uncoated steel thickness. Thickness is for carbon sheet steel.
- 2. Minimum thickness represents 95% of the design thickness and is the minimum acceptable thickness.
- 3. Per ASTM C955 & A1003, Table 1.
- 4. G90 available upon request. Will require extended lead time and upcharge.

Color Code (painted on ends): 43-mil: Yellow

ASTM & Code Standards:

- ASTM A653/A653M, A924/A924M, A1003/1003, C955 & C1007
- ICC-ES & SFIA Code Compliance Certification Program
- ICC ESR-3016
- ATI CCRR-0224

- 2012 AISI
- 2012/2015 IBC
- 2010/2013 CBC

LEED v3 for Building and Design Construction

- MR Credit 2: Construction Waste Management.
- MR Credit 4: Recycled Content.

LEED v4 for Building and Design Construction

- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.

■ Total Recycled Content: 36.9%

■ Post-Consumer: 19.8% ■ Pre-Consumer: 14.4%

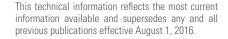
CSI Division: 05.40.00 – Cold-Formed Metal Framing

600T150-43 "T" Un-Punched Track

	oss		Effective Properties 33 ksi					Torsional Properties					
Design Thickness (in)	Area (in) ²	Weight (lb/ft)	lx (in) ³	Sx (in) ³	Ma (in-k)	Vag (lb)	Fya (ksi)	Jx1000 (in) ⁴	Cw (in) ⁶	Xo (in)	m	Ro (in)	ß
0.0451	0.405	1.38	1.890	0.474	9.36	1377	33.0	0.275	0.504	-0.680	0.437	2.398	0.920

Notes

- 1. Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2.
- 2. For deflection calculations, use the effective moment of inertia.
- 3. Web-height to thickness ratio exceeds 200. Web Stiffeners are required at all support points and concentrated loads.


4. Flange Width to thickness ratio exceeds 60, therefore it does not comply with code and only Gross Properties are calculated.

Technical Services

Corporate Headquarters

13191 Crossroads Parkway North, Suite 325 City of Industry, CA 91746 Phone: 800.775.2362 Fax: 626.330.7598

Manufacturing Facilities

City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA

Structural Engineering/Design

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598

BARE STEEL

THICKNESS

Technical Services

263 North Covina Lane City of Industry, CA 91744 **Phone:** 800.416.2278 **Fax:** 626.249.5005

DFPTH

600T125-43 "T" UN-PUNCHED TRACK (18 Ga. STRUCTURAL)

Geometric Properties

"T" tracks are fabricated in 43-mil thick galvanized steel in standard G60 coating weight. G90 is available upon special request, and may require up-charges and extended lead times.

Physical Properties

Model No.	Design Thickness (in)	Minimum Thickness (in)	Yield (ksi)	Coating ^{3,4}	Web Depth (in)	Leg Size (in)
600T125-43	0.0451	0.0428	33	G60 ³	6	1-1/4

Notes:

- 1. Uncoated steel thickness. Thickness is for carbon sheet steel.
- 2. Minimum thickness represents 95% of the design thickness and is the minimum acceptable thickness.
- 3. Per ASTM C955 & A1003, Table 1.
- 4. G90 available upon request. Will require extended lead time and upcharge.

Color Code (painted on ends): 43-mil: Yellow

ASTM & Code Standards:

- ASTM A653/A653M, A924/A924M, A1003/1003, C955 & C1007
- ICC-ES & SFIA Code Compliance Certification Program
- ICC ESR-3016
- ATI CCRR-0224

- 2012 AISI
- 2012/2015 IBC
- 2010/2013 CBC

LEED v3 for Building and Design Construction

- MR Credit 2: Construction Waste Management.
- MR Credit 4: Recycled Content.

LEED v4 for Building and Design Construction

- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.

■ Total Recycled Content: 36.9%

■ Post-Consumer: 19.8% ■ Pre-Consumer: 14.4%

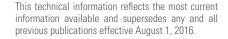
CSI Division: 05.40.00 – Cold-Formed Metal Framing

600T125-43 "T" Un-Punched Track

	Gr	oss	Effective Properties 33 ksi Torsional Properties			Torsional			rties				
Design Thickness (in)	Area (in) ²	Weight (lb/ft)	lx (in) ³	Sx (in) ³	Ma (in-k)	Vag (lb)	Fya (ksi)	Jx1000 (in) ⁴	Cw (in) ⁶	Xo (in)	m	Ro (in)	ß
0.0451	0.383	1.30	1.768	0.461	9.11	1377	33.0	0.260	0.307	-0.513	0.335	2.288	0.950

Notes

- 1. Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2.
- 2. For deflection calculations, use the effective moment of inertia.
- 3. Web-height to thickness ratio exceeds 200. Web Stiffeners are required at all support points and concentrated loads.


4. Flange Width to thickness ratio exceeds 60, therefore it does not comply with code and only Gross Properties are calculated.

Technical Services

Corporate Headquarters 13191 Crossroads Parkway North, Suite 325 City of Industry, CA 91746 Phone: 800.775.2362

Manufacturing Facilities

City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA

Structural Engineering/Design

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598

BARE STEEL

THICKNESS

Technical Services

263 North Covina Lane City of Industry, CA 91744 **Phone:** 800.416.2278 **Fax:** 626.249.5005

DEPTH

800T150-54 "T" UN-PUNCHED TRACK (16 Ga. STRUCTURAL)

Geometric Properties

"T" tracks are fabricated in 54-mil thick galvanized steel in standard G60 coating weight. G90 is available upon special request, and may require up-charges and extended lead times.

Fax: 626.330.7598

Physical Properties

Model No.	Design Thickness (in)	Minimum Thickness (in)	Yield (ksi)	Coating ^{3,4}	Web Depth (in)	Leg Size (in)
800T150-54	0.0566	0.0538	50	G60 ³	8	1-1/2

Notes:

- 1. Uncoated steel thickness. Thickness is for carbon sheet steel.
- 2. Minimum thickness represents 95% of the design thickness and is the minimum acceptable thickness.
- 3. Per ASTM C955 & A1003, Table 1.
- 4. G90 available upon request. Will require extended lead time and upcharge.

Color Code (painted on ends): 54-mil: Green

ASTM & Code Standards:

- ASTM A653/A653M, A924/A924M, A1003/1003, C955 & C1007
- ICC-ES & SFIA Code Compliance Certification Program
- ICC ESR-3016
- ATI CCRR-0224

- 2012 AISI
- 2012/2015 IBC
- 2010/2013 CBC

LEED v3 for Building and Design Construction

- MR Credit 2: Construction Waste Management.
- MR Credit 4: Recycled Content.

LEED v4 for Building and Design Construction

- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.

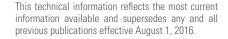
- Total Recycled Content: 36.9%
- Post-Consumer: 19.8%
- Pre-Consumer: 14.4%

CSI Division: 05.40.00 – Cold-Formed Metal Framing

800T150-54 "T" Un-Punched Track

	Gr	oss		Effective Properties 50 ksi					Torsional Properties				
Design Thickness (in)	Area (in) ²	Weight (lb/ft)	lx (in) ³	Sx (in) ³	Ma (in-k)	Vag (lb)	Fya (ksi)	Jx1000 (in) ⁴	Cw (in) ⁶	Xo (in)	m	Ro (in)	ß
0.0566	0.622	2.12	4.692	0.844	25.27	2039	50	0.664	1.215	-0.580	0.383	2.979	0.962

Notes


- 1. Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2.
- 2. For deflection calculations, use the effective moment of inertia.
- 3. Web-height to thickness ratio exceeds 200. Web Stiffeners are required at all support points and concentrated loads.
- 4. Flange Width to thickness ratio exceeds 60, therefore it does not comply with code and only Gross Properties are calculated.

Technical Services

Corporate Headquarters

13191 Crossroads Parkway North, Suite 325 City of Industry, CA 91746 Phone: 800.775.2362 Fax: 626.330.7598

Manufacturing Facilities

City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA

Structural Engineering/Design

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598

BARE STEEL

THICKNESS

Technical Services

263 North Covina Lane City of Industry, CA 91744 **Phone:** 800.416.2278 **Fax:** 626.249.5005

DEPTH

1000T150-54 "T" UN-PUNCHED TRACK (16 Ga. STRUCTURAL)

Geometric Properties

"T" tracks are fabricated in 54-mil thick galvanized steel in standard G60 coating weight. G90 is available upon special request, and may require up-charges and extended lead times.

Physical Properties

Model No.	Design Thickness (in)	Minimum Thickness (in)	Yield (ksi)	Coating ^{3,4}	Web Depth (in)	Leg Size (in)
1000T150-54	0.0566	0.0538	50	G60 ³	10	1-1/2

Notes:

- 1. Uncoated steel thickness. Thickness is for carbon sheet steel.
- 2. Minimum thickness represents 95% of the design thickness and is the minimum acceptable thickness.
- 3. Per ASTM C955 & A1003, Table 1.
- 4. G90 available upon request. Will require extended lead time and upcharge.

Color Code (painted on ends): 54-mil: Green

ASTM & Code Standards:

- ASTM A653/A653M, A924/A924M, A1003/1003, C955 & C1007
- ICC-ES & SFIA Code Compliance Certification Program
- ICC ESR-3016
- ATI CCRR-0224

- 2012 AISI
- 2012/2015 IBC
- 2010/2013 CBC

LEED v3 for Building and Design Construction

- MR Credit 2: Construction Waste Management.
- MR Credit 4: Recycled Content.

LEED v4 for Building and Design Construction

- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.

- Total Recycled Content: 36.9%
- Post-Consumer: 19.8%
- Pre-Consumer: 14.4%

CSI Division: 05.40.00 – Cold-Formed Metal Framing

1000T150-54 "T" Un-Punched Track

	Gross			Effective Properties 50 ksi					Torsional Properties				
Design Thickness (in)	Area (in) ²	Weight (lb/ft)	lx (in) ³	Sx (in) ³	Ma (in-k)	Vag (lb)	Fya (ksi)	Jx1000 (in) ⁴	Cw (in) ⁶	Xo (in)	m	Ro (in)	ß
0.0566	0.735	2.50	7.880	1.079	32.29	1628	50	0.785	2.013	-0.509	0.342	3.567	0.980

Notes

- 1. Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2.
- 2. For deflection calculations, use the effective moment of inertia.
- 3. Web-height to thickness ratio exceeds 200. Web Stiffeners are required at all support points and concentrated loads.
- 4. Flange Width to thickness ratio exceeds 60, therefore it does not comply with code and only Gross Properties are calculated.

Technical Services

ITEM #3

Corporate Headquarters

13191 Crossroads Parkway North, Suite 325 City of Industry, CA 91746 Phone: 800.775.2362 Fax: 626.330.7598

Manufacturing Facilities

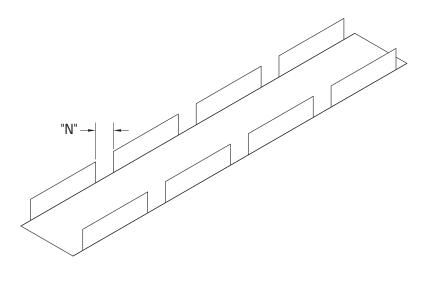
City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA

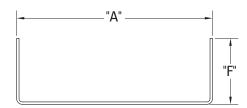
Structural Engineering/Design

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598

Technical Services

263 North Covina Lane City of Industry, CA 91744 Phone: 800.416.2278 Fax: 626.249.5005


"NT" - NOTCHED TRACK


Geometric Properties

"NT" notched-tracks are fabricated in several thicknesses for various stud flange widths. All CEMCO notched-tracks are manufactured with with 1-1/4" or 1-1/2" legs, with 1-3/4" notches. Notched-tracks come in 9' 4" and 10' 8" lengths for 16" on-center configurations, and 10' for 24" on-center. Notchedtracks are produced from hot-dipped galvanized steel in standard G60 coating weight. G90 is available upon special request.

Mil Thickness	Design Thickness ¹	Minimum Thickness ^{1,2}	Yield	Web Sizes (in)	Flange (in)
33	0.0346" (0.88mm)	0.0329" (0.84mm)	33	3-5/8, 4, 6	1-1/4, 1-1/2
43	0.0451" (1.15mm)	0.028" (1.09mm)	33	3-5/8, 4, <mark>6</mark>	1-1/4, 1-1/3
54	0.0566" (1.44mm)	0.0538" (1.37mm)	50	3-5/8, 4 <mark>, 6</mark>	1-1/4, 1-1/4
68	0.0713" (1.81mm)	0.0677" (1.72mm)	50	3-5/8, 4, 6	1-1/4, 1-1/5

- Uncoated Steel Thickness. Thickness is for carbon sheet steel.
- 2. Minimum Thickness represents 95% of the design thickness and is the minimum acceptable thickness delivered to the job site, based on Section A3.4 of the AISI 2012.

Color Code (painted on ends):

33-mil: White 43 mil: Yellow 54 mil: Green 68 mil: Orange

ASTM's & Code Standards

- ASTM A1003, A653, A924
- AISI 2012
- 2012/2015 IBC
- 2010/2013 CBC

LEED v3 for Building and Design Construction

- MR Credit 2: Construction Waste Management.
- MR Credit 4: Recycled Content.

LEED v4 for Building and Design Construction

- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

CEMCO cold-formed steel framing products contain 30% to 37% recycled steel

- Total Recycled Content: 36.9%
- Post-Consumer: 19.8%
- Pre-Consumer: 14.4%

ITEM #4

Corporate Headquarters

13191 Crossroads Parkway North, Suite 325 City of Industry, CA 91746 Phone: 800.775.2362 Fax: 626.330.7598

Manufacturing Facilities

City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA

Structural Engineering/Design

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598

Technical Services

263 North Covina Lane City of Industry, CA 91744 **Phone:** 800.416.2278 **Fax:** 626.249.5005

"CST" & "SLP-TRK®" BRAND SLOTTED TRACKS 18, 30, 33, 43, 54, 68 mil

Geometric Properties

C"CST" and "SLP-TRK®" brand slotted slip tracks are fabricated in following web depths and thicknesses. All CEMCO CST brand and Brady SLP-TRK® brand slotted slip tracks are produced from G40 coated steel for 18, 30 and 33 mil products. G60 is available upon request. All others are manufactured with G60 coating. G90 is available upon request.

Steel Thickness

Mil Thickness	Design Thickness (in.)1	Minimum Thickness (in.) ^{1,2}	Color Code painted on ends
18	0.0188 (0.48 mm)	0.0179 (0.45 mm)	None
30	0.0312 (0.79 mm)	0.0296 (0.75 mm)	Pink
33	0.0346 (0.88 mm)	0.0329 (0.84 mm)	White
43	0.0451 (1.15 mm)	0.0428 (1.09 mm)	Yellow
54	0.0566 (1.44 mm)	0.0538 (1.37 mm)	Green
68	0.0713 (1.81 mm)	0.0677 (1.72 mm)	Orange

- 1. Uncoated Steel Thickness. Thickness is for carbon sheet steel.
- 2. Minimum thickness represents 95% of the design thickness and is the minimum acceptable thickness with 2004 AISI supplement.

ASTM's & Code Standards

- ASTM A1003, A653, A924, C645, C754, C955
- ICC-ESR 1042 (Sliptrack Systems) & ICC-ESR 2012 (CEMCO CST)
- 2012/2015 IBC
- 2010/2013 CBC

- LEED v3 for Building and Design Construction

 MR Credit 2: Construction Waste Management.
- MR Credit 4: Recycled Content.

LEED v4 for Building and Design Construction

- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.

- Total Recycled Content: 36.9% ■ Post-Consumer: 19.8%
- Pre-Consumer: 14.4%

NEMBER OF THE MEET OF THE MEET.

CEMCO Slotted Track Configurations

"W" Web Size (in.)	"F" Flange Size (in.)	"S" Slot Size (in.)	"T" Steel Thickness (mil)
2-1/2, 3-5/8, 4, 6 & 8	2-1/2	1-1/2	18, 30, 33, 43, 54 & 68
2-1/2, 3-5/8, 4, 6 & 8		2	54 & 68
3-5/8, 4, 6 & 8	3-1/4	2*	54 & 68

Technical Services

^{*} Slots are 1" down from top of track

ITEM #5

Corporate Headquarters

Fax: 626.330.7598

13191 Crossroads Parkway North, Suite 325 City of Industry, CA 91746 **Phone:** 800.775.2362

City of Industry, CA
Denver, CO
Ft. Worth, TX
Pittsburg, CA

Manufacturing Facilities

Structural Engineering/Design

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598

Technical Services

263 North Covina Lane City of Industry, CA 91744 **Phone:** 800.416.2278 **Fax:** 626.249.5005

ANGLE - 1-1/2" x 1-1/2" x 54 mil.

Geometric Properties

1-1/2" x 1-1/2" 54-mil Angle is fabricated from hot-dipped galvanized steel in standard G60 coating. G90 coatings is available upon special request and may require extended lead time and up-charges.

Properties: 1-1/2" x 1-1/2" x 54 mil.

	Thickness (T)				
Product Code	Design Thickness (in)	Minimum Thickness (in)	Yield (ksi)	X (in)	Y (in)
16A112112	0.0566	0.0538	50	1-1/2	1-1/2

Notes:

- 1. Uncoated steel thickness. Thickness is for carbon sheet steel.
- 2. Minimum thickness represents 95% of the design thickness and is the minimum acceptable thickness.

Color Code (painted on ends):

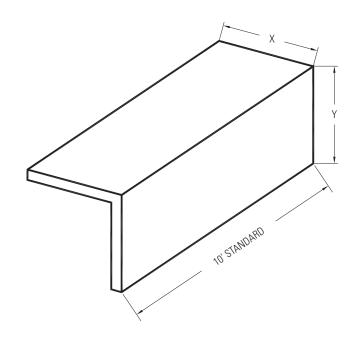
54-mil: Green

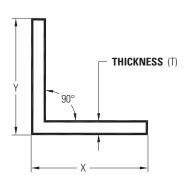
ASTM & Code Standards:

- ASTM A653/653M, A924/A924M, A1003/A1003M, C954
- 2012/2015 IBC
- 2010/2013 CBC
- 2012 AISI

LEED v3 for Building and Design Construction

- MR Credit 2: Construction Waste Management.
- MR Credit 4: Recycled Content.


LEED v4 for Building and Design Construction


- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.

■ Total Recycled Content: 36.9%

■ Post-Consumer: 19.8%

Corporate Headquarters

13191 Crossroads Parkway North, Suite 325 City of Industry, CA 91746 Phone: 800.775.2362 Fax: 626.330.7598

Manufacturing Facilities

City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA

Structural Engineering/Design

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598

Technical Services

263 North Covina Lane City of Industry, CA 91744 Phone: 800.416.2278 Fax: 626.249.5005

ANGLE - 2" x 2" x 54 mil.

Geometric Properties

2" x 2" 54-mil Angle is fabricated from hot-dipped galvanized steel in standard G60 coating. A G90 coating is available upon special request and may require extended lead time and up-charges.

Properties: 2" x 2" x 54 mil.

	Thickness (T)				
Product Code	Design Thickness (in)	Minimum Thickness (in)	Yield (ksi)	X (in)	Y (in)
16A22	0.0566	0.0538	50	2	2

Notes:

- 1. Uncoated steel thickness. Thickness is for carbon sheet steel.
- 2. Minimum thickness represents 95% of the design thickness and is the minimum acceptable thickness.

Color Code (painted on ends):

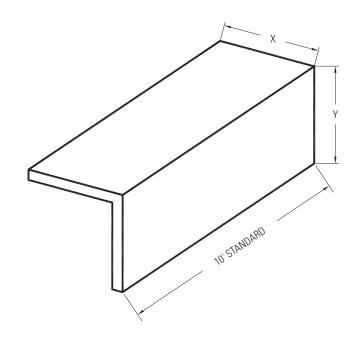
54-mil: Green

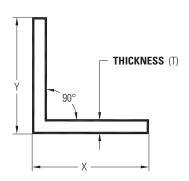
ASTM & Code Standards:

- ASTM A653/653M, A924/A924M, A1003/A1003M, C954
- 2012/2015 IBC
- 2010/2013 CBC
- 2012 AISI

LEED v3 for Building and Design Construction

- MR Credit 2: Construction Waste Management.
- MR Credit 4: Recycled Content.


LEED v4 for Building and Design Construction


- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.

■ Total Recycled Content: 36.9%

■ Post-Consumer: 19.8%

Corporate Headquarters

Fax: 626.330.7598

13191 Crossroads Parkway North, Suite 325 City of Industry, CA 91746 Phone: 800.775.2362

Manufacturing Facilities

City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA

Structural Engineering/Design

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598

Technical Services

263 North Covina Lane City of Industry, CA 91744 **Phone:** 800.416.2278 **Fax:** 626.249.5005

ANGLE - 2" x 2" x 97 mil.

Geometric Properties

2" x 2" 97-mil Angle is fabricated from hot-dipped galvanized steel in standard G60 coating. A G90 coating is available upon special request and may require extended lead time and up-charges.

Properties: 2" x 2" x 97 mil.

	Thickness (T)				
Product Code	Design Thickness (in)	Minimum Thickness (in)	Yield (ksi)	X (in)	Y (in)
12A22	0.1017	0.0966	50	2	2

Notes:

- 1. Uncoated steel thickness. Thickness is for carbon sheet steel.
- 2. Minimum thickness represents 95% of the design thickness and is the minimum acceptable thickness.

Color Code (painted on ends):

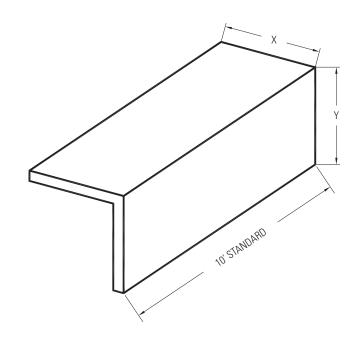
97-mil: Red

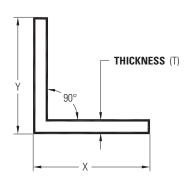
ASTM & Code Standards:

- ASTM A653/653M, A924/A924M, A1003/A1003M, C954
- 2012/2015 IBC
- 2010/2013 CBC
- 2012 AISI

LEED v3 for Building and Design Construction

- MR Credit 2: Construction Waste Management.
- MR Credit 4: Recycled Content.


LEED v4 for Building and Design Construction


- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.

■ Total Recycled Content: 36.9%

■ Post-Consumer: 19.8%

Corporate Headquarters

Fax: 626.330.7598

13191 Crossroads Parkway North, Suite 325 City of Industry, CA 91746 **Phone:** 800.775.2362

Manufacturing Facilities

City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA

Structural Engineering/Design

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598

Technical Services

263 North Covina Lane City of Industry, CA 91744 **Phone:** 800.416.2278 **Fax:** 626.249.5005

ANGLE - 3" x 3" x 54 mil.

Geometric Properties

3" x 3" 54-mil Angle is fabricated from hot-dipped galvanized steel in standard G60 coating. A G90 coating is available upon special request and may require extended lead time and up-charges.

Properties: 3" x 3" x 54 mil.

	Thickness (T)				
Product Code	Design Thickness (in)	Minimum Thickness (in)	Yield (ksi)	X (in)	Y (in)
16A33	0.0566	0.0538	50	3	3

Notes:

- 1. Uncoated steel thickness. Thickness is for carbon sheet steel.
- 2. Minimum thickness represents 95% of the design thickness and is the minimum acceptable thickness.

Color Code (painted on ends):

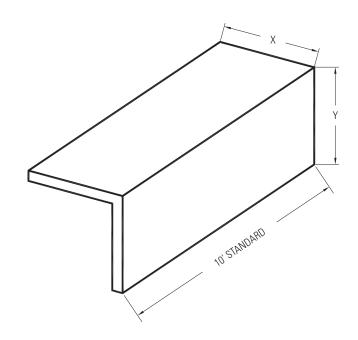
54-mil: Green

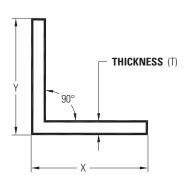
ASTM & Code Standards:

- ASTM A653/653M, A924/A924M, A1003/A1003M, C954
- 2012/2015 IBC
- 2010/2013 CBC
- 2012 AISI

LEED v3 for Building and Design Construction

- MR Credit 2: Construction Waste Management.
- MR Credit 4: Recycled Content.


LEED v4 for Building and Design Construction


- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.

■ Total Recycled Content: 36.9%

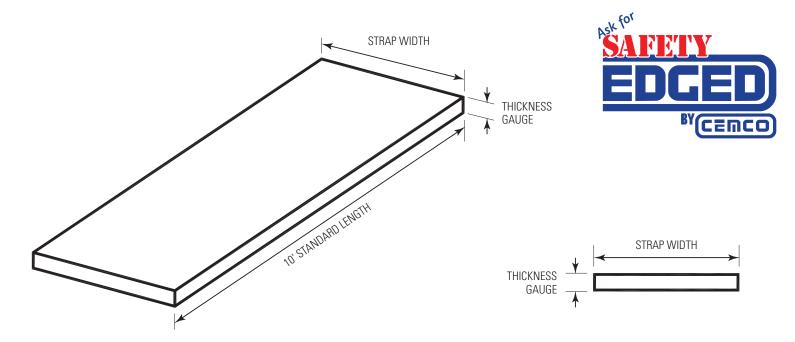
■ Post-Consumer: 19.8%

ITEM #6

13191 Crossroads Parkway North, Suite 325 City of Industry, CA 91746 Phone: 800.775.2362 Fax: 626.330.7598

Manufacturing Facilities

City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA


Structural Engineering/Design

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598

Technical Services

263 North Covina Lane City of Industry, CA 91744 **Phone:** 800.416.2278 **Fax:** 626.249.5005

FLAT STRAP SPECIFICATION — 4" x 54 mil (16FS4)

Geometric Properties

Product Code	Strap Width (in)	Thickness Gauge (mils)
16FS4	4	54

Coating: Standard G40. G60 and G90 are available only upon special request and will require extended lead times.

ASTM & Code Standards:

- ASTM A653/A653M, A924/A924M, A1003/1003, C645 & C754
- 2012 AISI
- 2012/2015 IBC
- 2010/2013 CBC

CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.

■ Total Recycled Content: 36.9% ■ Post-Consumer: 19.8%

■ Pre-Consumer: 14.4%

LEED v3 for Building and Design Construction

- MR Credit 2: Construction Waste Management.
- MR Credit 4: Recycled Content.

Flat Strap Load Capacities (lbs.)

Tensile Values for Straps (Tn [lbs.])							
Ω =	Thickness (mils) / Design Thickness / Gauge Reference						
Strap Width (in)	Yield Strength (Ksi)	18 0.0188 25					
4	50	6778					

Notes

- 1. For lengths greater than 20 feet, strap is available in coil form
- 2. Flat Strap is also available with widths greater than 12 inches

LEED v4 for Building and Design Construction

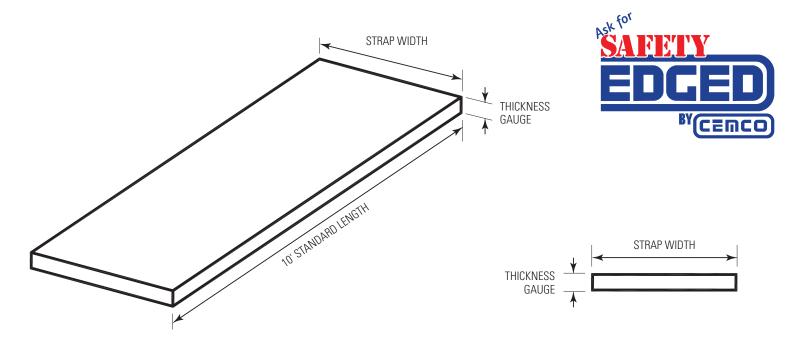
- MR Prerequisite: Construction and Demolition Waste Management Planning.
- $\hfill \blacksquare$ MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

Technical Services

13191 Crossroads Parkway North, Suite 325 City of Industry, CA 91746 Phone: 800.775.2362 Fax: 626.330.7598

Manufacturing Facilities

City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA


Structural Engineering/Design

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598

Technical Services

263 North Covina Lane City of Industry, CA 91744 **Phone:** 800.416.2278 **Fax:** 626.249.5005

FLAT STRAP SPECIFICATION - 6" x 97 mil (12FS6)

Geometric Properties

Product Code	Strap Width (in)	Thickness Gauge (mils)
12FS6	6	97

Coating: Standard G40. G60 and G90 are available only upon special request and will require extended lead times.

ASTM & Code Standards:

- ASTM A653/A653M, A924/A924M, A1003/1003, C645 & C754
- 2012 AISI
- 2012/2015 IBC
- 2010/2013 CBC

CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.

■ Total Recycled Content: 36.9%

■ Post-Consumer: 19.8%

■ Pre-Consumer: 14.4%

LEED v3 for Building and Design Construction

- MR Credit 2: Construction Waste Management.
- MR Credit 4: Recycled Content.

Flat Strap Load Capacities (lbs.)

Tensile Values for Straps (Tn [lbs.])							
Ω =	Ω = 1.67						
Strap Width (in)	Yield Strength (Ksi)	18 0.0188 25					
6	50	18269					

Notes

- 1. For lengths greater than 20 feet, strap is available in coil form
- 2. Flat Strap is also available with widths greater than 12 inches

LEED v4 for Building and Design Construction

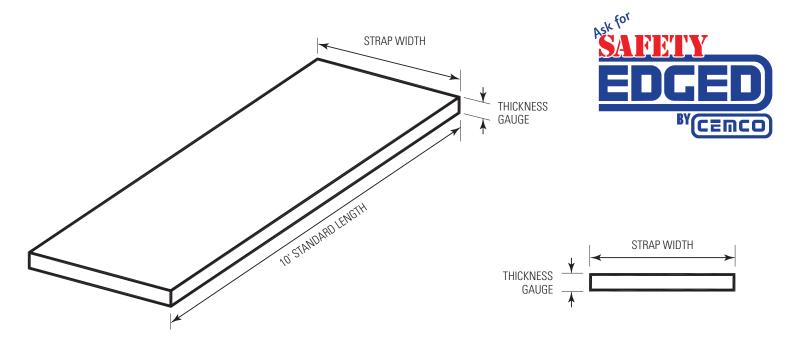
- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

Technical Services

13191 Crossroads Parkway North, Suite 325 City of Industry, CA 91746 Phone: 800.775.2362 Fax: 626.330.7598

Manufacturing Facilities

City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA


Structural Engineering/Design

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598

Technical Services

263 North Covina Lane City of Industry, CA 91744 **Phone:** 800.416.2278 **Fax:** 626.249.5005

FLAT STRAP SPECIFICATION — 6" x 54 mil (16FS6)

Geometric Properties

Product Code	Strap Width (in)	Thickness Gauge (mils)
16FS6	6	54

Coating: Standard G40. G60 and G90 are available only upon special request and will require extended lead times.

ASTM & Code Standards:

- ASTM A653/A653M, A924/A924M, A1003/1003, C645 & C754
- 2012 AISI
- 2012/2015 IBC
- 2010/2013 CBC

CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.

■ Total Recycled Content: 36.9%

■ Post-Consumer: 19.8%

■ Pre-Consumer: 14.4%

LEED v3 for Building and Design Construction

- MR Credit 2: Construction Waste Management.
- MR Credit 4: Recycled Content.

Flat Strap Load Capacities (lbs.)

Tensile Values for Straps (Tn [lbs.])							
Ω:	Thickness (mils) / Design Thickness / Gauge Reference						
Strap Width (in)	Yield Strength (Ksi)	18 0.0188 25					
6	50	10168					

Notes

- 1. For lengths greater than 20 feet, strap is available in coil form
- 2. Flat Strap is also available with widths greater than 12 inches

LEED v4 for Building and Design Construction

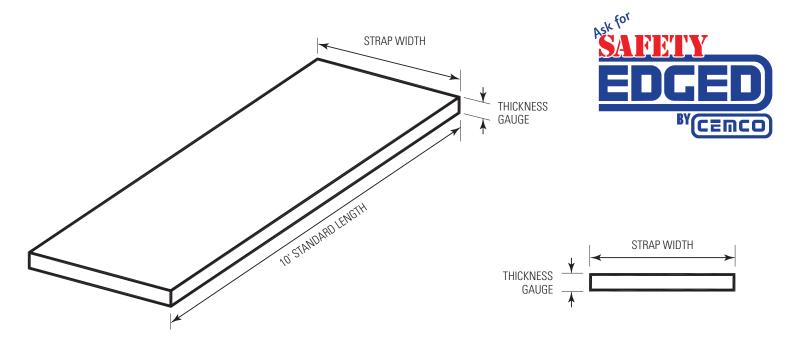
- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

Technical Services

13191 Crossroads Parkway North, Suite 325 City of Industry, CA 91746 Phone: 800.775.2362 Fax: 626.330.7598

Manufacturing Facilities

City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA


Structural Engineering/Design

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598

Technical Services

263 North Covina Lane City of Industry, CA 91744 **Phone:** 800.416.2278 **Fax:** 626.249.5005

FLAT STRAP SPECIFICATION — 6" x 43 mil (18FS6)

Geometric Properties

Product Code	Strap Width (in)	Thickness Gauge (mils)
18FS6	6	43

Coating: Standard G40. G60 and G90 are available only upon special request and will require extended lead times.

ASTM & Code Standards:

- ASTM A653/A653M, A924/A924M, A1003/1003, C645 & C754
- 2012 AISI
- 2012/2015 IBC
- 2010/2013 CBC

CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.

■ Total Recycled Content: 36.9%

■ Post-Consumer: 19.8%

■ Pre-Consumer: 14.4%

LEED v3 for Building and Design Construction

- MR Credit 2: Construction Waste Management.
- MR Credit 4: Recycled Content.

Flat Strap Load Capacities (lbs.)

Tensile Values for Straps (Tn [lbs.])							
Ω=	Thickness (mils) / Design Thickness / Gauge Reference						
Strap Width (in)	Yield Strength (Ksi)	18 0.0188 25					
6	33	5347					

Notes

- 1. For lengths greater than 20 feet, strap is available in coil form
- 2. Flat Strap is also available with widths greater than 12 inches

LEED v4 for Building and Design Construction

- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

Technical Services: 800.416.2278 Structural Engineering/Design: 925.473.9340 www.cemcosteel.com

This technical information reflects the most current information available and supersedes any and all previous publications effective August 1, 2016.

ITEM #7

Expanding Your Solutions

Corporate Headquarters

13191 Crossroads Parkway North, Suite 325 City of Industry, CA 91746 Phone: 800.775.2362 Fax: 626.330.7598

Manufacturing Facilities

City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA

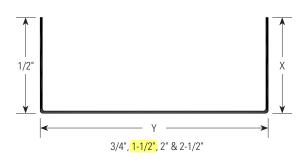
Structural Engineering/Design

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598

Technical Services

263 North Covina Lane City of Industry, CA 91744 **Phone:** 800.416.2278 **Fax:** 626.249.5005

"U" - UNPUNCHED U-SHAPED CHANNEL • 1-1/2" x 54 Mil.


Geometric Properties

1-1/2" "U" channels are fabricated in 1/2" legs. All CEMCO U-Shaped channels are produced from hot-dipped galvanized steel in standard G60 coating. G90 is available upon special request.

Steel Thickness

Thickness (mil)	Design Thickness (in) ¹	Minimum Thickness (in) ^{1,2}
54	0.0566 (1.44 mm)	0.0538 (1.37 mm)

Notes: 1. Uncoated Steel Thickness. Thickness is for carbon sheet steel. **2.** Minimum Thickness represents 95% of the design thickness and is the minimum acceptable thickness delivered to the job site, based on Section A4.3 of the AISI S100-2007.

Color Code (painted on ends): 54-mil: Green

ASTM & Code Standards:

- ASTM A653/A653M, 924/A924M, A1003/1003, C955 & C1007
- ICC-ES & SFIA Code Compliance Certification Program
- ICC ESR-3016
- ATI CCRR-0224
- AISI S100-12
- 2012/2015 IBC
- 2010/2013 CBC

CSI Division: 05.40.00 – Cold-Formed Metal Framing

LEED v3 for Building and Design Construction

- MR Credit 2: Construction Waste Management.
- MR Credit 4: Recycled Content.

LEED v4 for Building and Design Construction

- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.

■ Total Recycled Content: 36.9% ■ Post-Consumer: 19.8%

■ Pre-Consumer: 14.4%

U-Channel Section Properties

		Design	Gross Properties					Effective Properties				
	Section	Thickness (in)	Area (in²)	Weight (lb/ft)	lx (in ⁴)	Rx (in)	ly (in⁴)	Ry (in)	lx (in ⁴)	Sx (in³)	Ma (in-k)	Va (lbs)
1	50U050-54	0.0566	0.129	0.44	0.039	0.547	0.003	0.144	0.039	0.052	1.22	840

Notes: 1. For Deflection calculations, use effective lxx.

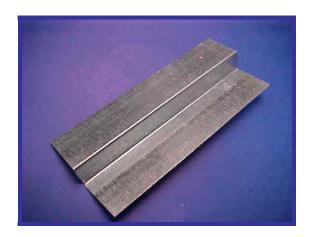
U-Shaped Channels Allowable Ceiling Spans

<u> </u>	onapou onamicio, morranio coming opanio																
	Uniform Load																
Section			psf Chan	nel Spacing o.c. (in)			6 psf Channel Spacing o.c. (in)				13 psf Channel Spacing o.c. (in)						
			24	36	48	60	72	24	36	48	60	72	24	36	48	60	72
	L/240 ──	Single	5'-6"	4'-10"	4'-5"	4'-1"	3'-10"	4'-10"	4'-3"	3'-10"	3'-7"	3'-5"	3'-9"	3'-3"	3'-0"	2'-9"	2'-7"
			Multiple	7'-1"	6'-2"	5'-8"	5'-3"	4'-11"	6'-2"	5'-5"	4'-11"	4'-7"	4'-4"	4'-10"	4'-2"	3'-9"	3'-4"
150U050-54	1 /000	Single	5'-6"	4'-10"	4'-5"	4'-1"	3'-10"	4'-10"	4'-3"	3'-10"	3'-7"	3'-5"	3'-9"	3'-3"	3'-0"	2'-9"	2'-7"
	L/360	Multiple	7'-1"	6'-2"	5'-8"	5'-3"	4'-11"	6'-2"	5'-5"	4'-11"	4'-7"	4'-4"	4'-10"	4'-2"	3'-9"	3'-4"	3'-0"

Notes:

- 1. Fy = 50 ksi for all sections.
- 2. Multiple span indicates two or more equal spans with channel continuous over interior supports.
- 2. Bearing Lengths = 0.75".
- $\textbf{3.} \ \mathsf{Allowable} \ \mathsf{spans} \ \mathsf{based} \ \mathsf{on} \ \mathsf{the} \ \mathsf{compression} \ \mathsf{flange} \ \mathsf{laterally} \ \mathsf{unbraced}.$





ITEM #8

The Innovators of Quality Framing and Lath Systems

Z-Furring Channel Specification

MAXIMUM	MINIMUM	MAXIMUM	STEEL
BLANK SIZE	LEG SIZE	LENGTH	THICKNESS (ga)
22"	7/8"	21'	12,14,16 <mark>,18</mark> ,20 & 25

CEMCO Z - Furring Channel is fabricated from hot-dipped galvanized steel complying with ASTM A653 with a minimum G40 coating meeting ASTM A924. The furring channel is fabricated from minimum 25 gauge (0.0179-inch-thick) steel (uncoated). The channel is manufactured in various web depths and leg lengths (attachable flange).

CALIFORNIA EXPANDED METAL LATH PRODUCTS CO.

Corporate Office 263 N. Covina Lane, City of Industry, CA 91744 Phone (800) 775-2362 Fax (626) 330-7598

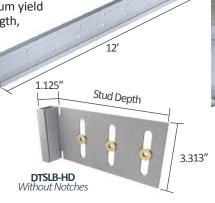
1001-A Pittsburg Antioch Hwy, Pittsburg, CA 94565 Phone (925) 473-9340 Fax (925) 473-9341

490 Osage Street, Denver, CO 80204 Phone (303) 572-3626 Fax (303) 572-3627

www.cemcosteel.com

ITEM #9

DriftTrak® DTSLB


Bypass Slab

Material Composition

Clip Material: ASTM A1003/A1003M Structural Grade 50 (340) Type H, ST50H (ST340H): 50ksi (340MPa) minimum yield strength, 65ksi (450MPa) minimum tensile strength, 68mil minimum thickness (14 gauge, 0.0713" design thickness) with ASTM A653/A653M G90 (Z275) hot dipped galvanized coating.

Track Material: ASTM A1003/A1003M Structural Grade 50 (340) Type H, ST50H (ST340H): 50ksi (340MPa) minimum yield strength, 65ksi (450MPa) minimum tensile strength, 97mil minimum thickness (12 gauge, 0.1017" design thickness) with ASTM A653/A653M G60 (Z180) hot dipped galvanized coating.

DriftTrak DTSLB Allowable (Unfactored) Loads

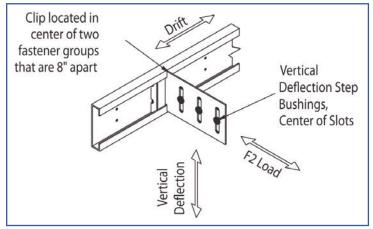
DriftTrak® DTSLB & DTSLB-HD, Recommended Allowable Load (lbs): F2										
			Fastener Pattern 1 & 2							
			DT:	SLB			DTSL	B-HD		
Stud		Track to	7" Fastener Spacing in Track to Structure (or welded on each side) 16" Fastener Spacing in Track to Structure (or welded on each side)		8" Fastener Spacing in Track to Structure (or welded on each side)		16" Fastener Spacing in Track to Structure (or welded on each side)			
Thickness Mils (ga)	Yield Strength (ksi)	w/2 #12 Screws	w/3 #12 Screws	w/2 #12 Screws	w/3 #12 Screws	w/2 #12 Screws	w/3 #12 Screws	w/2 #12 Screws	w/3 #12 Screws	
33 (20)	33	377	565	377	565	377	565	377	565	
33 (20)	50	544	808	544	753	544	817	544	817	
43 (18)	33	561	808	561	753	561	841	561	841	
43 (18)	50	808	808	753	753	810	1,215	810	953	
54 (16)	33	789	808	753	753	789	1,183	789	953	
54 (16)	50	808	808	753	753	1,139	1,618	953	953	
68 (14)	50	808	808	753	753	1,610	1,618	953	953	
97 (12)	50	808	808	753	753	1,618	1,618	953	953	
Maximum Allo	wable Clip Load	80	08	7!	53	1.6	518	9!	53	

Notes:

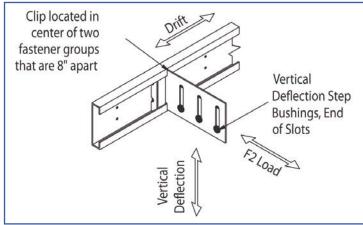
- Design loads are for attachment of DriftTrak DTSLB to stud only. Load tables reflect horizontal loads (F2).
- Attachment to structure engineered by others.
- Allowable loads have not been increased for wind, seismic, or other factors.
- #12 screws are provided with each step bushing for attachment to stud. Load requirements don't always justify use of a third screw.
- Clips are manufactured to fit into the DriftTrak and provide up to 2" of vertical deflection (1" up and 1" down), and free lateral movement of the structure.
- Allow a minimum of 0.875" from the structure to the inside flange of the bypassing stud to allow for track attachment. Standard offset of stud from the open face of the track should not exceed 1.25".
- One row of bridging is recommended at a maximum distance of 18" from DriftTrak to resist torsional effects.
- ¹ For LRFD Design Strengths refer to ICC-ESR-2049.

Nomenclature

DriftTrak DTSLB is classified by multiplying stud depth by 100, followed by "HD," based on F2 strength required. Refer to load tables.*

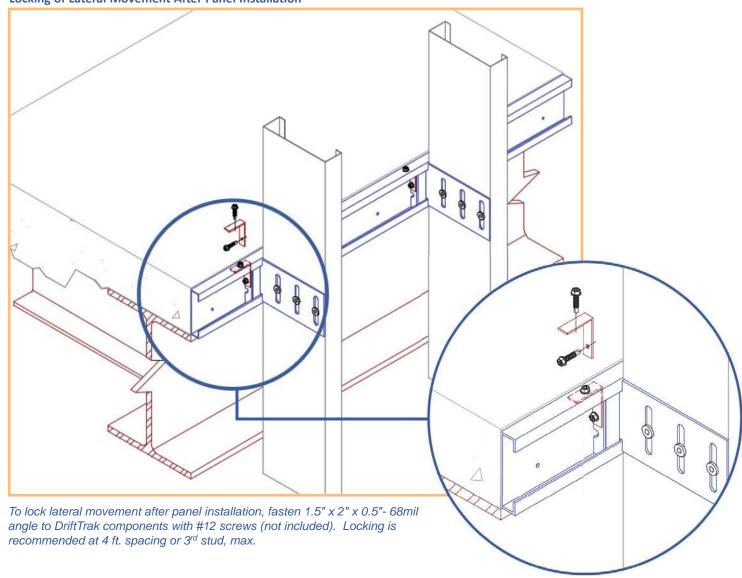

Example: 6" stud depth, with an outward load (F2) of 1,000 lbs **Designate:** DriftTrak® DTSLB600-HD

Load Direction



^{*} Notches are standard in DriftTrak DTSLB. For greater F2 outward load capacity, use DTSLB-HD clips w/o notches. Refer to Allowable Load Table.

Fastener Patterns

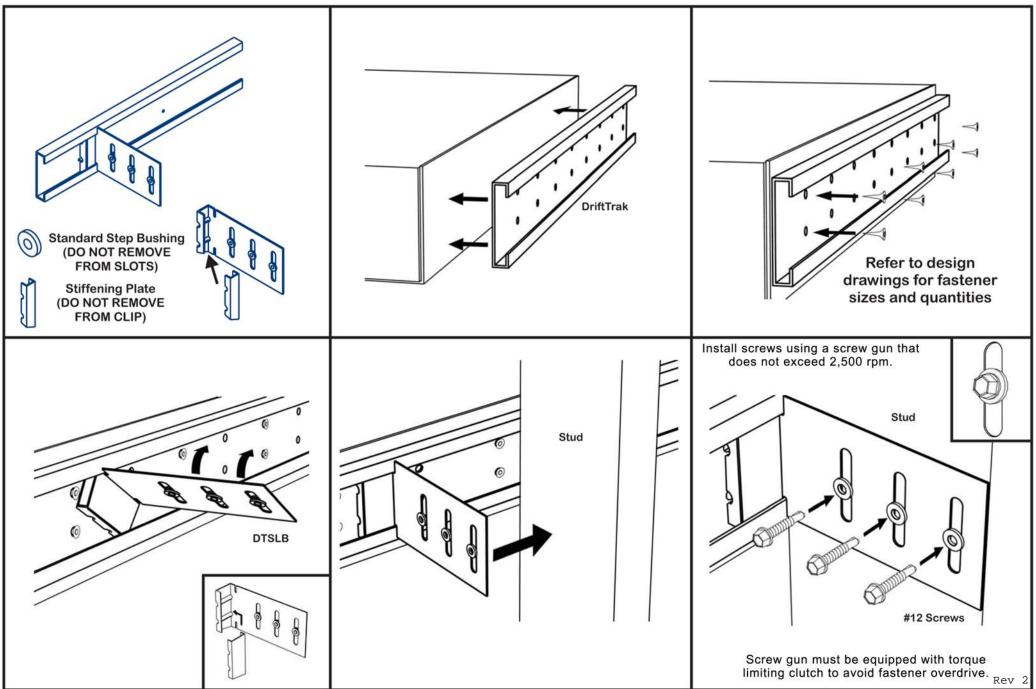


Fastener Pattern 1 replicates a condition of out-of-plane wind or seismic force with no vertical live load deflection and full in-plane drift.

Fastener Pattern 2 replicates a condition of out-of-plane wind or seismic force with full vertical live load deflection and full in-plane drift.

Locking of Lateral Movement After Panel Installation

DriftTrak DTSLB362/400, DTSLB600 & DTSLB800 ICC-ESR-2049 www.icc-es.org



DriftTrak DTSLB Series Blast and Seismic Design data www.steelnetwork.com

^{**} For more information or to review a copy of each of these reports, please visit our website at http://www.steelnetwork.com/Site/TechnicalData

DriftTrak® DTSLB Installation Instructions Vertical Deflection & Drift @ Slab Edge

© 2012 The Steel Network, Inc. All Rights Reserved

JS Patents #7,503,150 & #7,104,024

ITEM #10

February 22, 2010

To Whom It May Concern:

The International Building Code and International Residential Code (IBC 2006 and IRC2006) refer to ASTM C 1002 and ASTM C 954 as the necessary requirements for sharp point and self-drilling screw fasteners:

ASTM C 1002 - Standard Specification for Steel Self-Piercing Tapping Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Wood Studs or Steel Studs

ASTM C 954 - Standard Specification for Steel Drill Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Steel Studs from 0.033 in. (0.84 mm) to 0.112 in. (2.84 mm) in Thickness

ASTM C 1002 covers sharp point screws for attachment of drywall to wood or light gauge steel. ASTM C 954 covers self-drilling screws for attachment of drywall to light gauge steel.

For IBC and IRC areas, drywall screws meeting the aforementioned ASTM standards are addressed within the building code by reference standard. Therefore, if the drywall screw meets the requirements of ASTM C 1002 or ASTM C 954, the design of these fasteners would be in accordance with the IBC or IRC and AISI NASPEC. Screw fastener load performance data, as well as spacing and edge distance recommendations are provided in the IBC, IRC and AISI NASPEC.

All Hilti Sharp Point and Self Drilling Screws meet the requirements of ASTM C 1002 or ASTM C 954.

The above information is current as of this date and is subject to change without notice. I hope this addresses your needs. Please feel free to contact me if you have any further questions.

Regards,

Andrew Liechti, P.E.
Technical Services Engineer
Hilti, Inc.

P: (918) 872-5805 F: (918) 461-5805 Drew.Liechti@hilti.com

Hilti, Inc. 5400 South 122nd East Avenue Tulsa, Oklahoma 74146 800-879-8000 (US) or 800-363-4458 (Canada)

July 4, 2009

To Whom It May Concern:

This letter is to state Hilti's position regarding the installation of chemically treated lumber such as ACQ. Hilti offers a range of screw fasteners with progressive resistance to corrosion and Hydrogen-Assisted Stress Corrosion Cracking (HASCC):

- Screws with a high corrosion resistant finish. Within Hilti's current line of screws, this includes the following:
 - Cement Board Screws
 - Ceramic Coated Wood Screws
 - Wood to Metal Self-drilling Screws with Kwik Cote finish (with and without wings)
 - o Any other screw with a Kwik Cote finish such as the collated 2" Coarse (#331919)
 - Please consider that these screws are hardened along their entire length and are therefore susceptible to HASCC. Whether the site-specific conditions may create HASCC must be determined by the responsible person on the project.
- <u>Kwik Flex screws</u>. In addition to the the Kwik Cote finish, Kwik Flex screws are virtually immune to HASCC due to their differential hardness the load bearing section of the threads is not hardened.
- <u>Bi-metal Kwik Flex screws</u>. These screws feature a carbon steel drill tip for maximum drilling performance with a 300 series (18-8) stainless steel body for maximum corrosion resistance. Bi-metal Kwik Flex are virtually immune to HASCC.
- Please consider that hardened 410 stainless steel, 410 super-passivated stainless steel and 400 modified stainless steel are generally considered susceptible to HASCC.

At the time of writing, there was no standardized set of criteria for claiming ACQ compliance. The decision as to which fastener optimally meets the demands of a specific application is ultimately the judgment of the Engineer of Record or other responsible person for the project.

For additional information, please consult the Hilti Technical Guide or call 800-879-8000 and ask to speak with a Technical Services Engineer.

Best Regards,

Aaron Heilbrun Product Manager Screw Fastening Systems

Self-Drilling Screws 3.6.2

3.6.2.1 Product Description

The Hilti Self-Drilling Screws are designed to drill their own hole in steel base materials up to 1/2" thick. These screws are available in a variety of head styles, thread lengths and drill-flute lengths for screw diameters #6 through 1/4". Hilti self-drilling screws meet ASTM C 1513, ASTM C 954 and SAE J78 standards, as applicable.

Product Features

- Hex head for metal-to-metal applications
- Flush head for wood-to-metal applications
- For metal from 0.035" to 0.500" thick
- · Winged reamers for wood over 1/2" thick
- Stitch screws for light gauge metal-to-metal
- Sealing screws for water resistant fastenings

3.6.2.2 Material Specifications

	•
Material	ASTM A 510 Grade 1018-1022
Heat Treatment	Case hardened and tempered • Sizes 8, 10 and 12: 0.004" to 0.009" case depth • Size 1/4": 0.005" to 0.011" case depth
Plating	 Wood decking screws: Black Phosphate (8-18 x 1-5/16" PFH #3 and 8-18 x 1-15/16" and 5/16" PFH #3) Kwik-Cote and Kwik-Seal screws: 0.0007" to 0.0015" Kwik-Cote Treatment Note: Due to environmental considerations, Hilti does not plate with cadmium. Most Hilti zinc plated screws conform to ASTM F 1941 (which replaces ASTM B 633), as tested in accordance with ASTM B 117. The minimum zinc thickness is 5 microns. Refer to Section 3.6.2.5 for screw coating information.
Kwik-Cote Treatment	Kwik-Cote is a unique copolymer coating that provides greater corrosion resistance than zinc or cadmium plating.

3.6.2.3 Technical Data

Ultimate Tensile Strengths - Pullout (Tension), lb (kN)1,2,3,4,5,6,7

0	Nominal	Thickness of steel member not in contact with the screw head, GA (in.)					
Screw	Diameter	20	18	16	14	12	10
Designation	in.	(0.036)	(0.048)	(0.060)	(0.075)	(0.105)	(0.135)
#6	0.400	190	250	320	395	555	715
#6	0.138	(0.85)	(1.11)	(1.42)	(1.76)	(2.47)	(3.18)
#7	0.151	210	275	345	435	605	780
#7 0.151	0.151	(0.93)	(1.22)	(1.53)	(1.93)	(2.69)	(3.47)
"0	0.164	225	300	375	470	660	845
#8		(1.00)	(1.33)	(1.67)	(2.09)	(2.94)	(3.76)
#40	0.400	260	350	435	545	765	980
#10	0.190	(1.16)	(1.56)	(1.93)	(2.42)	(3.40)	(4.36)
#10	0.016	295	395	495	620	870	1120
#12	0.216	(1.31)	(1.76)	(2.20)	(2.76)	(3.87)	(4.98)
4/4:	0.250	345	460	575	715	1000	1290
1/4 in.	0.250	(1.53)	(2.05)	(2.56)	(3.18)	(4.45)	(5.74)

- 1 The lower of the ultimate pull-out, pullover, and tension fastener strength of screw should be used for design.
- 2 Load values based upon calculations done in accordance with Section E4 of the AISI North American Specification for the Design of Cold-Formed Steel Structural Members (NASPEC) 2007 edition.
- 3 The NASPEC recommends a safety factor of 3.0 be applied for allowable strength design, a Φ factor of 0.5 be applied for LRFD design or a Φ factor of 0.4 be
- 4 ANSI/ASME standard screw diameters were used in the calculations and are listed in the tables.
- 5 The screw diameters in the table above are available in head styles of pan, hex washer, pancake, flat, wafer and bugle.
- 6 The load data in the table is based upon sheet steel with F_{...} = 45 ksi. For F_{...} = 55 ksi steel, multiply values by 1.22. For F_{...} = 65 ksi steel, multiply values by 1.44.
- 7 Refer to Section 3.6.2.5 to ensure drilling capacities.

3.6.2.1	Product Description
3.6.2.2	Material Specifications
3.6.2.3	Technical Data
3.6.2.4	Installation Instructions
3.6.2.5	Ordering Information

Listings/Approvals

ICC-ES (International Code Council) ESR-2196 COLA (City of Los Angeles) RR 25678

ICC-ES ESR-2196, provides IBC 2006/2009 recognition of Hilti's Self-Drilling Screw fasteners for most common applications (e.g. CFS connections, gypsum to CFS, etc.), including HWH, PPH, PBH, PWH, PPCH, PFUCH and PFTH head style screws.

3.6.2 Self-Drilling Screws

Ultimate Tensile Strengths - Pullover (Tension), lb (kN)1,2,3,4,5,6,7

0	Washer or	Thickness of steel member in contact with the screw head, GA (in.)						
Screw Designation	Head Diameter	22	20	18	16	14	12	10
Designation	in.	(0.030)	(0.036)	(0.048)	(0.060)	(0.075)	(0.105)	(0.135)
	•		Hex V	Vasher Head (H	IWH)			
#0	0.225	675	815	1000	1000	1000	1000	1000
#8 0.335	0.555	(3.00)	(3.63)	(4.45)	(4.45)	(4.45)	(4.45)	(4.45)
#10	0.399	805	970	1290	1370	1370	1370	1370
#10	0.599	(3.58)	(4.31)	(5.74)	(6.09)	(6.09)	(6.09)	(6.09)
#12-14	0.415	835	1010	1340	1680	2100	2325	2325
#12-14	0.415	(3.71)	(4.49)	(5.96)	(7.47)	(9.34)	(10.34)	(10.34)
#12-24	0.415	835	1010	1340	1680	2100	2940	3780
#12-24	0.415	(3.71)	(4.49)	(5.96)	(7.47)	(9.34)	(13.08)	(16.81)
1/4 in.	0.500	1010	1220	1620	2030	2530	3540	4560
1/4 111.	0.500	(4.49)	(5.43)	(7.21)	(9.03)	(11.25)	(13.75)	(20.28)
				ps Pan Head (_
#7	0.303	615	735	980	1000	1000	1000	1000
#1 0	0.303	(2.74)	(3.27)	(4.36)	(4.45)	(4.45)	(4.45)	(4.45)
#8	0.311	630	755	1000	1000	1000	1000	1000
#0	0.511	(2.80)	(3.36)	(4.45)	(4.45)	(4.45)	(4.45)	(4.45)
#10	0.364	740	885	1180	1370	1370	1370	1370
#10	0.004	(3.29)	(3.94)	(5.25)	(6.09)	(6.09)	(6.09)	(6.09)
				os Truss Head	<u>, , </u>			
#8	0.433	875	1000	1000	1000	1000	1000	1000
	01.100	(3.89)	(4.45)	(4.45)	(4.45)	(4.45)	(4.45)	(4.45)
#10	0.411	830	1000	1330	1390	1390	1390	1390
	0.411	(3.69)	(4.45)	(5.92)	(6.18)	(6.18)	(6.18)	(6.18)
				Pancake Head	<u>, , , , , , , , , , , , , , , , , , , </u>			
#10	0.409	830	995	1325	1370	1370	1370	1370
	0.400	(3.69)	(4.43)	(5.89)	(6.09)	(6.09)	(6.09)	(6.09)
				Flat Truss Hea	· · · · · · · · · · · · · · · · · · ·			
#10	0.364	740	885	1180	1475	1840	2170	2170
#10	0.004	(3.29)	(3.94)	(5.25)	(6.56)	(8.18)	(9.65)	(9.65)

- 1. The lower of the ultimate pull-out, pullover, and tension fastener strength of screw should be used for design.
- 2. Load values based upon calculations done in accordance with Section E4 of the AISI North American Specification for the Design of Cold-Formed Steel Structural Members (NASPEC) 2007 edition.
- 3. The NASPEC recommends a safety factor of 3.0 be applied for allowable strength design, a Φ factor of 0.5 be applied for LRFD design or a Φ factor of 0.4 be applied for LSD design.
- 4. ANSI/ASME standard screw head diameters were used in the calculations and are listed in the tables.
- 5. Phillips Bugle Head (PBH) and Phillips Wafer Head (PWH) styles are not covered by this table because they are not intended for attachment of steel to steel.
- 6. The load data in the table is based upon sheet steel with F_{...} = 45 ksi. For F_{...} = 55 ksi steel, multiply values by 1.22. For F_{...} = 65 ksi steel, multiply values by 1.44.
- 7. Refer to Section 3.6.2.5 for drilling capacities.

Nominal Ultimate Fastener Strength of Screw

Screw	Nominal	N	ominal Fast	ener Streng	th
Designation	Diameter	ter Tension, P _{ts}		Shear, P _{ss}	
Designation	(in.)	lb (kN)¹	lb (kl	
#6-20	0.138	1000	(4.45)	890	(3.96)
#7-18	0.151	1000	(4.45)	890	(3.96)
#8-18	0.164	1000	(4.45)	1170	(5.20)
#10-12	0.190	2170	(9.65)	1645	(7.32)
#10-16	0.190	1370	(6.09)	1215	(5.40)
#10-18	0.190	1390	(6.18)	1645	(7.32)
#12-14	0.216	2325	(10.34)	1880	(8.36)
#12-24	0.216	3900	(17.35)	2285	(10.16)
1/4 in.	0.250	4580	(20.37)	2440	(10.85)

- 1 The lower of the ultimate pull-out, pullover, and tension fastener strength of screw should be used for design.
- 2 The lower of the ultimate shear fastener strength and shear bearing should be used for design.
- 3 The NASPEC recommends a safety factor of 3.0 be applied for allowable strength design, a Φ factor of 0.5 be applied for LRFD design or a Φ factor of 0.4 be applied for LSD design.
- 4 When the distance to the end of the connected part is parallel to the line of the applied force the allowable shear fastener strength must be reduced for end distance, when necessary, in accordance with E4.3.2 of Appendix A of the AISI North American Specifications for the Design of Cold Formed Steel Structural Members (NASPEC) 2007 edition.

Torsional Strength -

Screw Only. Does Not Consider Base Material Limitations

Size	Min. Torsional Strength in-lb (Nm)		
6-20	24	(2.7)	
7-18	38	(4.3)	
8-18	42	(4.8)	
10-12	61	(6.9)	
10-16	61	(6.9)	
10-18	61	(6.9)	
10-24	65	(7.3)	
12-14	92	(10.4)	
12-24	100	(11.3)	
1/4-14	150	(17.0)	
1/4-20	156	(17.6)	

Self-Drilling Screws 3.6.2

Ultimate Shear Strengths - Bearing (Shear), lb (kN)1,2,3,4,5,6,7

Screw	Nominal Diameter	Thickness of steel member in contact	ict Thickness of steel member not in contact with the screw head, GA			ead, GA (in.)	
Designation	in.	with screw head GA (in.)	20 (0.036)	18 (0.048)	16 (0.060)	14 (0.075)	≥ 12 (0.105)
		20 (0.036)	500 (2.22)	660 (2.94)	660 (2.94)	660 (2.94)	660 (2.94)
#7	0.151	18 (0.048)	500 (2.22)	660 (2.94)	880 (3.91)	880 (3.91)	880 (3.91)
		≥ 16 (0.060)	500 (2.22)	660 (2.94)	890 (3.96)	890 (3.96)	890 (3.96)
		20 (0.036)	525 (2.34)	715 (3.18)	715 (3.18)	715 (3.18)	715 (3.18)
#8	0.164	18 (0.048)	525 (2.34)	805 (3.58)	955 (4.25)	955 (4.25)	955 (4.25)
		≥ 16 (0.060)	525 (2.34)	805 (3.58)	1120 (4.98)	1170 (5.20)	1170 (5.20)
		20 (0.036)	565 (2.51)	830 (3.69)	830 (3.69)	830 (3.69)	830 (3.69)
#10-12	0.190	18 (0.048)	565 (2.51)	865 (3.85)	1110 (4.94)	1110 (4.94)	1110 (4.94)
#10-12	0.190	16 (0.060)	565 (2.51)	865 (3.85)	1210 (5.38)	1390 (6.18)	1390 (6.18)
		≥ 14 (0.075)	565 (2.51)	865 (3.85)	1210 (5.38)	1645 (7.32)	1645 (7.32)
		20 (0.036)	565 (2.51)	830 (3.69)	830 (3.69)	830 (3.69)	830 (3.69)
#10-16	0.190	18 (0.048)	565 (2.51)	865 (3.85)	1110 (4.94)	1110 (4.94)	1110 (4.94)
		≥ 16 (0.060)	565 (2.51)	865 (3.85)	1210 (5.38)	1215 (5.40)	1215 (5.40)
		20 (0.036)	565 (2.51)	830 (3.69)	830 (3.69)	830 (3.69)	830 (3.69)
#10-18	0.190	18 (0.048)	565 (2.51)	865 (3.85)	1110 (4.94)	1110 (4.94)	1110 (4.94)
#10-16	0.190	16 (0.060)	565 (2.51)	865 (3.85)	1210 (5.38)	1390 (6.18)	1390 (6.18)
		≥ 14 (0.075)	565 (2.51)	865 (3.85)	1210 (5.38)	1645 (7.32)	1645 (7.32)
		20 (0.036)	600 (2.67)	930 (4.14)	945 (4.20)	945 (4.20)	945 (4.20)
#12-14	0.216	18 (0.048)	600 (2.67)	925 (4.11)	1260 (5.60)	1260 (5.60)	1260 (5.60)
#12-14	0.216	16 (0.060)	600 (2.67)	925 (4.11)	1290 (5.74)	1570 (6.98)	1570 (6.98)
		≥ 14 (0.075)	600 (2.67)	925 (4.11)	1290 (5.74)	1800 (8.00)	1880 (8.36)
		20 (0.036)	600 (2.67)	930 (4.14)	945 (4.20)	945 (4.20)	945 (4.20)
		18 (0.048)	600 (2.67)	925 (4.11)	1260 (5.60)	1260 (5.60)	1260 (5.60)
#12-24	0.216	16 (0.060)	600 (2.67)	925 (4.11)	1290 (5.74)	1570 (6.98)	1570 (6.98)
		14 (0.075)	600 (2.67)	925 (4.11)	1290 (5.74)	1800 (8.00)	1970 (8.76)
		≥ 12 (0.090)	600 (2.67)	925 (4.11)	1290 (5.74)	1800 (8.00)	2285 (10.16)
		20 (0.036)	645 (2.87)	1020 (4.54)	1090 (4.85)	1090 (4.85)	1090 (4.85)
		18 (0.048)	645 (2.87)	995 (4.43)	1400 (6.23)	1460 (6.49)	1460 (6.49)
1/4 in.	0.250	16 (0.060)	645 (2.87)	995 (4.43)	1390 (6.18)	1820 (8.10)	1820 (8.10)
		14 (0.075)	645 (2.87)	995 (4.43)	1390 (6.18)	1940 (8.63)	2280 (10.14)
		≥ 12 (0.090)	645 (2.87)	995 (4.43)	1390 (6.18)	1940 (8.63)	2440 (10.85)

- 1 The lower of the ultimate shear bearing and shear fastener strength of screw should be used for design.
- 2 Load values based upon calculations done in accordance with Section E4 of the AISI North American Specification for the Design of Cold-Formed Steel Structural Members (NASPEC) 2007 edition. It is assumed that the steel sheets are tight together with no gaps.
- 3 The NASPEC recommends a safety factor of 3.0 be applied for allowable strength design, a Φ factor of 0.5 be applied for LRFD design or a Φ factor of 0.4 be applied for LSD design.
- 4 ANSI/ASME standard screw head diameters were used in the calculations and are listed in the tables.
- 5 Load values in table are for Hex Washer Head (HWH and HHWH), Phillips Pan Head (PPH), Phillips Truss Head (PTH), Phillips Pancake Head (PPCH), and Phillips Flat Truss Head (PFTH) style screws. Phillips Bugle Head (PBH) and Phillips Wafer Head (PWH) styles are not covered by this table because they are not intended for attachment of steel to steel.
- 6 The load data in the table is based upon sheet steel with F_u = 45 ksi. For F_u = 55 ksi steel, multiply values by 1.22. For F_u = 65 ksi steel, multiply values by 1.44.
- 7 Refer to Section 3.6.2.5 to ensure drilling capacities.

3.6.2.4 Installation Instructions

For general discussion of Hilti screw fastener installation, reference Section 3.6.1.7.

For allowable diaphragm shear loads and stiffness values for steel roof or floor deck utilizing Hilti self-drilling screws as frame or sidelap fasteners, reference Section 3.5 and

download Hilti's Profis DF software at www.us.hilti.com/ decking (US), or www.hilti.ca (Canada).

To estimate the number of sidelap screws on a steel roof or floor deck project, reference Section 3.5.1.6.

Warning: Because of the potential for delayed hydrogen assisted stress corrosion cracking, many hardened steel fasteners are not recommended for use with dissimilar metals or chemically treated wood when moisture may be present or in corrosive environments. For further information, contact Hilti Technical Support at 1-877-749-6337.

Self-Drilling Screws 3.6.2

Drywall Applications (Drywall to steel, framing and lathing screws)

Description	Coating ¹	Box Qty	Application
6 x 1 PBH SD	BP	10,000	Fastening Drywall, plywood, insulation,
6 x 1 PBH SD Zinc	Zinc-2	10,000	etc. to metal studs from 14 ga to 20 ga
6 x 1-1/8 PBH SD	BP	10,000	
6 x 1-1/8 PBH SD Zinc	Zinc-2	10,000	
6 x 1-1/4 PBH SD	BP	8,000	
6 x 1-1/4 PBH SD Zinc	Zinc-2	8,000	
6 x 1-5/8 PBH SD	BP	5,000	
6 x 1-5/8 PBH SD Zinc	Zinc-2	5,000	
6 x 1-7/8 PBH SD	BP	4,000	
6 x 1-7/8 PBH SD Zinc	Zinc-2	4,000	
8 x 2-3/8 PBH SD	BP	2,500	
8 x 2-3/8 PBH SD Zinc	Zinc-2	2,500	
8 x 2-5/8 PBH SD	BP	1,600	
8 x 2-5/8 PBH SD Zinc	Zinc-2	1,600	
8 x 3 PBH SD	BP	1,400	
8 x 3 PBH SD Zinc	Zinc-2	1,400	
7 x 7/16 PPFH SD Framer	BP	10,000	Fastening stud to track
7 x 7/16 PPFH SD Framer Zinc	Zinc-2	10,000	from 14 ga to 20 ga
8 x 1/2 PPH SD Framer Zinc	Zinc-2	10,000	
10 x 5/8 PPCH SD Framer	Zinc-1	7,500	
10 x 3/4 PFTH SD Framer Zinc	Zinc-1	7,500	
10 x 3/4 PTH SD Framer Zinc	Zinc-2	5,000	
8 x 1/2 PTH SD Lathing Zinc	Zinc-2	10,000	Fastening wire lath to 14 ga to 20 ga
8 x 3/4 PTH SD Lathing Zinc	Zinc-2	10,000	
8 x 1 PTH SD Lathing Zinc	Zinc-2	8,000	
8 x 1-1/4 PTH SD Lathing Zinc	Zinc-2	8,000	
6 x 1-5/8 SFH SD	BP	5,000	Fastening wood trim and base to
6 x 2-1/4 SFH SD Zinc	Zinc-2	3,000	14 ga to 20 ga studs

¹ For coating abbreviations, Zinc-1 = ASTM F 1941; Zinc-2 = EN /ISO 4042 A3F; BP = Black Phosphate. For more information on corrosion resistance, reference Section 3.6.1.6.

The importance of IBC 2006 / 2009 compliant screws.

ICC-ES ESR-2196 provides IBC 2006 / 2009 recognition of Hilti's Self-Drilling Screw Fasteners. This recognition was based on a comprehensive and rigorous independent evaluation of Hilti's Self-Drilling Screw Fasteners to the latest IBC code requirements in ICC-ES AC118 Acceptance Criteria for Self-Tapping Screw Fasteners, as well as the AISI S904 and AISI S905 test standards.

AC118 provides the IBC code recognition and quality assurance for screw fasteners. ESR-2196 recognizes many types of Hilti screws for the most common applications including CFS connections, gypsum to CFS, etc. Specifically, ESR-2196 covers the HWH, PPH, PBH, PWH, PPCH, PFUCH and PFTH head style Hilti screws.

To ensure IBC 2006 / 2009 compliance of screws on your next project, reference ESR-2196.

Manufa	cturing Location for Hilti Drywal	I Screws
Item Number	Product Description	Country of Origin
	Screw S-MD 1/4-20 1 1/2"	
451	HWH4 KF	US
	Screw S-MD 1/4-20 2"	
452	HWH4 KF	US
	Screw S-MD 12-14 2"	
8595	HWH3 KF	US
	Screw S-MD 1/4-14 2"	
8598	HWH3 KF	US
	Sheet metal screw	
10190	8x1/2" SHWH	TW
	Sheet metal screw	
10192	10X3/4 HWH 5/16 H	TW
	Wood screw 6 X 1 1/4	
10196	PBHS Decking	TW
	Wood screw 6 X 2 PBHS	
10215	Decking	TW
	Wood screw 8 X 2 1/2	
10222	PBHS Decking	TW
	Wood screw 8 X 3 PBHS	
10224	Decking	TW
	Drywall screw 8X1/2	
10262	PTH S LATH ZINC	TW
	Drywall screw 8X3/4	
10263	PTH S LATH ZINC	TW
	Drywall screw 8 X 1 PTH	
10264	S LATH ZINC	TW
	Drywall screw 8X1 1/4	
10265	PTH S LATH ZI	TW
	Screw S-MD 10-24 1 1/4"	
10354	PWH3 KF	US
	Screw S-MD 12-14 1"	
10355	PFHUC3 KF	US
	Screw S-MD 1/4-20 2 1/2"	
10436	HWH4 KF	US
	Drywall screw 6 X 1-1/4	
84290	PBH SD	TW
	Drywall screw 6x1-1/4	
84291	PBH S	TW

Item Number	Product Description	Country of Origin
	Drywall screw 8 X 2-5/8	
84293	PBH SD	TW
	Drywall screw 6 X 1-1/4	
84294	PBH S CRS	TW
	Drywall screw 7 X 2-1/4	
84295	PBH S CRS	TW
	Drywall screw 6 X 1 PBH	
84297	s	TW
	Drywall screw 6 X 1-5/8	
84307	PBH S CRS	TW
	Drywall screw 6 X 2 PBH	
84310	s	TW
	Drywall screw 6 X 2-1/4	
84311	PBH S	TW
	Drywall screw 6X1-1/8	
84316	PBH S CRS	TW
	Drywall screw 8X 3 PBH	
84317	S CRS	TW
	Drywall screw 7X 2-1/2	
84319	PBH S	TW
	Drywall screw 7X 2 PBH	
84320	S CRS	TW
	Drywall screw 7X2-1/2	
84322	PBH S CRS	TW
	Drywall screw 6X 1-5/8	
84323	PBH S	TW
	Drywall screw 6X1 PBH	
84325	S CRS	TW
	Drywall screw 8 X 3 PBH	
84328	s	TW
	Drywall screw 6 X 1-1/8	
84329	PBH S	TW
	Wood screw 6 X 2 1/4	
84331	SFH S TRIM	TW
	Drywall screw 6 X 1 1/8	
86198	PBH S HI/LO	TW
	Drywall screw 6 X 1 1/4	-
86199	PBH S HI/LO	TW

Item Number	Product Description	Country of Origin
	Drywall screw 6 X 1 5/8	
86200	PBH S HI/LO	TW
	Drywall screw 6X2 PBH	
86201	S HI/LO	TW
	Drywall screw 8X3 PBH	
86204	S HI/LO	TW
	Drywall screw 10X 1-1/2	
86205	PBH S LAM	TW
	Drywall screw 7 X 7/16	
86206	PPH S FRMR	TW
	Drywall screw 6x7/16	
86207	PPH S	TW
	Drywall screw 8 X 1/2	
86208	PPH S	TW
	Drywall screw 6 X 1 PBH	
86211	SD	TW
00211	Drywall screw 6X1 PBH	1 00
86212	SD ZINC	TW
80212		1 VV
04242	Drywall screw 6X 1-1/8 PBH SD	TW
86213		I VV
0/044	Drywall screw 6X1 1/8	T18/
86214	PBH SD ZINC	TW
2/245	Drywall screw 6X 1 1/4	
86215	PBH SD ZINC	TW
	Drywall screw 6X 1-5/8	
86216	PBH SD	TW
	Drywall screw 6 X 1 5/8	
86217	PBH SD ZINC	TW
	Drywall screw 6 X 1 7/8	
86218	PBH SD	TW
	Drywall screw 6 X 1 7/8	
86219	PBH SD ZINC	TW
	Drywall screw 8 X 2 3/8	
86220	PBH SD	TW
	Drywall screw 8 X 2 3/8	
86221	PBH SD ZINC	TW
	Drywall screw 8 X 2 5/8	
86222	PBH SD ZINC	TW
· -	Drywall screw 8 X 3 PBH	
86223	SD	TW
UULLU		

Item Number	Product Description	Country of Origin
	Drywall screw 8X 3 PBH	
86224	SD ZINC	TW
	Drywall screw 7X 7/16	
86225	PPH SD FRMR	TW
	Drywall screw 7X7/16	
86226	PPH SD FRMR ZI	TW
	Drywall screw 8X1/2	
86228	PTH SD LATH ZI	TW
	Drywall screw 8X1 PTH	
86231	SD LATH ZINC	TW
	Drywall screw 8X1-	
86232	1/4PTH SD LATH ZI	TW
	Wood screw 6 X 1-5/8	
86233	SFH SD TRIM	TW
	Wood screw 6 X 2 1/4	
86236	SFH SD TRIM ZINC	TW
33233	Drywall screw 8X3/4	
87145	PTH SD LATH ZI	TW
371.13	Screw S-MD 12-14 7/8"	
87572	HWH3 KF	US
0/3/2	Screw S-MD 12-14 1"	
87646	HWH3 KF	US
87040	Screw S-MD 12-14 1 1/2"	
87647	HWH3 KF	US
87047		
87648	Screw S-MD 1/4-14 1"	US
87648	HWH3 KF	<u> </u>
07/40	Screw S-MD 1/4-14 1 1/2"	116
87649	HWH3 KF	US
22227//	Self-drilling screw S-MD	-
2098766	10-16X3/4 HWH3	TW
	Drywall screw 6X1 1/8	
254805	PBH S M	AE
	Drywall screw 6X1 1/4	
254806	PBH S M	AE
	Drywall screw 6X1 5/8	
254807	PBH S M	AE
	Drywall screw 6X1 1/4	
254809	PBH S CRS M	AE
	Drywall screw 6X1 5/8 S	
254810	CRS M	AE

Item Number	Product Description	Country of Origin
	Self-drilling screw S-MD	
311438	8-18X1/2 HWH 2	TW
	Self-drilling screw S-MD	
311439	8-18X3/4 HWH 2	TW
	Self-drilling screw S-MD	
311441	8-18X1/2 PPH 2	TW
	Self-drilling screw S-MD	
311445	10-16X1/2 HWH 2	TW
	Self-drilling screw S-MD	
311446	10-16X3/4 HWH 2	TW
	Self-drilling screw S-MD	
311447	10-16X1 HWH 2	TW
	Self-drilling screw S-MD	
2098767	10-16X5/8 HWH 3	TW
	Self-drilling screw S-MD	
2098768	10-16X3/4 HHWH3	TW
	Self-drilling screw S-MD	
2098769	10-16X1 HWH 3	TW
	Self-drilling screw S-	
2099040	MD10-16X1 1/4 HWH	TW
	Self-drilling screw S-	
2099041	MD10-16X1 1/2 HWH	TW
	Self-drilling screw S-MD	
2099042	10-16X5/8 PPH 3	TW
	Self-drilling screw S-MD	
2099043	10-16X3/4 PPH 3	TW
2077010	Self-drilling screw S-MD	
2099044	12-14X3/4 HWH 3	TW
	Self-drilling screw S-MD	
2099045	12-14X1 HWH 3	TW
2077070	Self-drilling screw S-	
2099046	MD12-14X1 1/2HWH 3	TW
2077070	Self-drilling screw S-MD	
2099048	1/4-14X3/4 HWH	TW
2077040	Self-drilling screw S-MD	1 40
2099049	1/4-14X1 HWH 3	TW
2017047	Self-drilling screw S-	1 44
2099050	MD1/4-14X1 1/2HWH	TW
2077030		i vv
2000054	Self-drilling screw S-MD	T\A/
2099051	1/4-14X2 HWH 3	TW

of Origin V
V
v
v
v
v
V
V
V
V
V
V
V
V
V
V
V
V
V
v
v

Item Number	Product Description	Country of Origin
	Wood screw S-WD 10-	, and a same
311634	24X1 1/2 PWH 3	TW
311331	Self-drilling wing screw	
311635	WW 10-24X1 7/16	TW
311000	Self-drilling wing screw	
311636	S-WW 12-24X2 PF	TW
	Self-drilling wing screw	
311637	S-WW 12-24X2 1/	TW
	Self-drilling wing screw	
311638	S-WW1/4-20X2 3/	TW
	Self-drilling screw S-MD	
312010	12-14X1 HHWH ST	TW
	Self-drilling screw 10-	
312011	16X7/8 HWH PIL	TW
	Drywall screw 6X1 1/8	
314640	PBH S CRS M	AE
	Drywall screw 6X1 1/8	
314645	PBH SD ZI M	AE
	Drywall screw 6X1 1/4	
314646	PBH SD ZI M	AE
	Drywall screw 6X1 5/8	
314647	PBH SD ZI M	AE
	Drywall screw 6X2 PBH	
331919	S CRS KCOTE M	AE
	Drywall screw 6X2 PBH	
331921	S CRS M	AE
	Drywall screw 6X2 PBH	
331927	S M	AE
	Drywall screw 6X2 PBH	
331931	SD ZINC M	AE
	Drywall screw S-DD 12-	
2098865	14x1 PTH 3	TW
	Drywall screw S-DD 10-	
2099055	18x3/4 PTH 3	TW
	Drywall screw 10 X 5/8	
2099056	PPCH SD FRMR	TW
	Drywall screw 8X1 1/4	
372757	PWH S CMT BD	TW
	Drywall screw 8X1 1/4	
372759	PWH SD CMT BD	TW

Item Number	Product Description	Country of Origin
	Drywall screw 8X1 5/8	
372760	PWH SD CMT BD	TW
	Drywall screw 10X3/4	
2099057	PFTH SD FRMR	TW
	Sidelap connector S-SLC	
378973	02 M HWH	TW
	Self-drilling screw S-MD	
378976	10-16x3/4M HWH3	TW
	Self-drilling screw S-MD	
378977	12-24x7/8M HWH4	TW
	Sidelap connector S-SLC	
385453	01 M HWH	TW
	Drywall screw 6X1 5/8	
388146	PBH S CRS M	AE
	Drywall screw 6X1 1/4	
388147	PBH S CRS M	AE
	Drywall screw 6X2 PBH	
388148	S CRS M	AE
	Drywall screw 6X1 1/4	
388149	PBH S M	AE
	Drywall screw 6X1 5/8	
388150	PBH S M	AE
	Self-drilling screw S-MS	
406474	8-18x1/2 HWH	TW
	Screw S-MD 10-16 3/4"	
408123	HWH3 KF	US
	Screw S-MD 12-14 1 1/2"	
408127	HWH4 KF	US
	Screw 6x1 1/4" PBH SD	
411517	CRC	TW
	Screw 6x1 7/8" PBH SD	
413489	CRC	TW
110107	Self-drilling screw S-	1 11
418613	MS01Z 8-18x1/2 HWH	TW
	Self-drilling screw S-MS	
423252	10-12x3/4" HHWH	TW
	Self-drilling screw S-MS	
423253	10-12x3/4" HHWH	TW
120200	Screw S-MD ¼-20 1 ½"	
451	HWH4 KF	US
131	1100117 101	

Item Number	Product Description	Country of Origin				
	Screw S-MD 1/4-20 2"					
452	HWH4 KF	US				
	Screw S-MD 12-14 2"					
8595	HWH3 KF	US				
	Screw S-MD 1/4-14 2"					
8598	HWH3 KF	US				
	Sheet metal screw					
10190	8x1/2" SHWH	TW				
	Sheet metal screw					
10192	10X3/4 HWH 5/16 H	TW				
	Wood screw 6 X 1 1/4					
10196	PBHS Decking	TW				
	Wood screw 6 X 2 PBHS					
10215	Decking	TW				
	Wood screw 8 X 2 1/2					
10222	PBHS Decking	TW				
TW = Taiwan AE = United Arab Emirates						

3.3.6 KWIK HUS-EZ (KH-EZ) Carbon Steel Screw Anchor

3.3.6.1	Product description	
3.3.6.2	Material specifications	
3.3.6.3	Technical data	
3.3.6.4	Installation instructions	
3.3.6.5	Ordering information	

Listings/Approvals

ICC-ES (International Code Council)
ESR-3027
Cracked and Uncracked Concrete
ESR-3056
Grout-filled concrete masonry
City of Los Angeles
Research Report No. 25897

Independent code evaluation

3.3.6.1 Product description

Hilti KWIK HUS-EZ (KH-EZ) anchors are comprised of a body with hex washer head. The anchor is manufactured from carbon steel and is heat treated. It has a minimum 0.0003 inch (8 µm) zinc coating in accordance with DIN EN ISO 4042. The KWIK HUS-EZ (KH-EZ) system is available in a variety of lengths with diameters of 1/4-, 3/8-, 1/2-, 5/8- and 3/4-in. The hex head is larger than the diameter of the anchor and is formed with serrations on the underside. The anchor body is formed with threads running most of the length of the anchor body. The anchor is installed in a predfilled hole with a powered impact wrench or torque wrench. The anchor threads cut into the concrete on the sides of the hole and interlock with the base material during installation. Applicable base materials include normal-weight concrete, structural lightweight concrete, lightweight concrete over metal deck, and grout-filled concrete masonry.

Guide specifications

Screw anchors shall be KWIK HUS-EZ as supplied by Hilti, Inc. Anchors shall be manufactured from heat treated carbon steel material, zinc plated to a minimum thickness of 8 µm. Anchor head shall display name of manufacturer, product name, diameter and length. Anchors shall be installed using a drill bit of same nominal diameter as anchor.

Product features

- Suitable for seismic and nonseismic loads.
- Quick and easy to install.
- Length and diameter identification clearly stamped on head facilitates quality control and inspection after installation.
- Through fixture installation improves productivity and accurate installation.
- Thread design enables quality setting and exceptional load values in wide variety of base material strengths.
- Anchor is fully removable
- Anchor size is same as drill bit size.
- Suitable for reduced edge distances and spacing.

3.3.6.2 Material specifications

Hilti KWIK HUS-EZ anchors are manufactured from carbon steel. The anchors are bright zinc plated to a minimum thickness of 8 µm.

3.3.6.3 Technical data

3.3.6.3.1 ACI 318-14 Chapter 17 design

The technical data contained in this section are Hilti Simplified Design Tables. The load values were developed using the Strength Design parameters and variables of ESR-3027 and the equations within ACI 318-14 Chapter 17. For a detailed explanation of the Hilti Simplified Design Method, refer to section 3.1.8. Data tables from ESR-3027 are not contained in this section, but can be found on www.icc-es.org or at www.us.hilti.com.

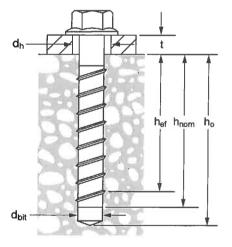

KWIK HUS-EZ (KH-EZ) Carbon Steel Screw Anchor 3.3.6

Table 1 - KWIK HUS-EZ specifications¹

Setting							Non	ninal and	hor diar	neter				
information	Symbol	Units	1	1/4 3/8 1/2			5/8		3/4					
Nominal bit diameter	d _{bit}		1	/4		3/8			1/2		5/8		3/4	
Minimum nominal embedment	h _{nom}	in.	1-5/8	2-1/2	1-5/8	2-1/2	3-1/4	2-1/4	3	4-1/4	3-1/4	5	4	6-1/4
Minimum effective embedment	h _{ef}	in.	1.18	1.92	1.11	1.86	2.50	1.50	2.16	3.22	2.39	3.88	2.92	4.84
Minimum hole depth	h _o	in.	2	2-7/8	1-7/8	2-3/4	3-1/2	2-5/8	3-3/8	4-5/8	3-5/8	5-3/8	4-4/8	6-5/8
Minimum fixture hole diameter	d _h	in.	3,	3/8 1/2 5/8			3,	/4	7,	/8				
Anchor Length = h _{nom} + t	l						See	ordering	informa	ation				
Installation torque	_	ft-lb	1	8	19	4	0	45			85		11	15
concrete	T _{inst}	(Nm)	(2	4)	(26)	(5	4)		(61)		(11	15)	(15	55)
Maximum impact wrench	_	ft-lb	114	137	114	4	50	137	45	50	45	50	45	50
torque rating concrete ²	impact,max	(Nm)	(154)	(185)	(154)	(60	08)	(185)	(60	08)	(60)8)	(60)8)
Installation torque		ft-lb	2	1		22	22 34			38		70		
masonry		(Nm)	(2	8)	(30)		(46)			(52)		(9:	5)	
Maximum impact wrench		ft-lb	11	4	11	4	332		332		33	32	33	32
torque rating masonry ^{2,3}		(Nm)	(15	55)	(15	55)	(450)		(450)		(45	50)	(45	iO)
Wrench size		in.	7/	16		9/16			3/4		15,	/16	1-1	/8

¹ T_{inst} is the maximum installation torque that may be applied with a torque wrench.

Figure 1 - KWIK HUS-EZ specifications

² Because of variability in measurement procedures, the published torque of an impact tool may not correlate properly with the above setting torques. Over torquing can damage the anchor and/or reduce its holding capacity.

³ For more information on KWIK HUS-EZ installed in masonry, see ESR-3056 and section 3.3.6.3.3.

3.3.6 KWIK HUS-EZ (KH-EZ) Carbon Steel Screw Anchor

Table 2 - Hilti KWIK HUS-EZ design strength with concrete/pullout failure in uncracked concrete^{1,2,3,4,5}

Nominal	Nominal		Tensio	n - φN _п		Shear - φV _n			
anchor diameter	embed. in. (mm)	f' _c ≈ 2,500 psi lb (kN)	f' _c = 3,000 psi lb (kN)	f' _c = 4,000 psi lb (kN)	f' = 6,000 psi lb (kN)	f' = 2,500 psi lb (kN)	f' _o = 3,000 psi lb (kN)	f' _c = 4,000 psi lb (kN)	f' _c = 6,000 psi lb (kN)
	1-5/8	585	620	675	765	1,075	1,180	1,360	1,670
4.44	(41)	(2.6)	(2.8)	(3.0)	(3.4)	(4.8)	(5.2)	(6.0)	(7.4)
1/4	2-1/2	1,525	1,670	1,930	2,365	2,235	2,450	2,825	3,460
	(64)	(6.8)	(7.4)	(8.6)	(10.5)	(9.9)	(10.9)	(12.6)	(15.4)
	1-5/8	910	1,000	1,155	1,415	980	1,075	1,245	1,520
	(41)	(4.0)	(4.4)	(5.1)	(6.3)	(4.4)	(4.8)	(5.5)	(6.8)
3/8	2-1/2	1,980	2,165	2,505	3,065	2,130	2,335	2,695	3,300
0,0	(64)	(8.8)	(9.6)	(11.1)	(13.6)	(9.5)	(10.4)	(12.0)	(14.7)
	3-1/4	3,085	3,375	3,900	4,775	6,640	7,275	8,400	10,290
	(83)	(13.7)	(15.0)	(17.3)	(21.2)	(29.5)	(32.4)	(37.4)	(45.8)
	2-1/4	1,645	1,800	2,080	2,550	1,770	1,940	2,240	2,745
	(57)	(7.3)	(0.8)	(9.3)	(11.3)	(7.9)	(8.6)	(10.0)	(12.2)
1/2	3	2,785	3,050	3,525	4,315	3,000	3,285	3,795	4,645
'/-	(76)	(12.4)	(13.6)	(15.7)	(19.2)	(13.3)	(14.6)	(16.9)	(20.7)
	4-1/4	5,070	5,555	6,415	7,855	10,920	11,965	13,815	16,920
	(108)	(22.6)	(24.7)	(28.5)	(34.9)	(48.6)	(53.2)	(61.5)	(75.3)
	3-1/4	3,240	3,550	4,100	5,025	3,490	3,825	4,415	5,410
5/8	(83)	(14.4)	(15.8)	(18.2)	(22.4)	(15.5)	(17.0)	(19.6)	(24.1)
3/0	5	6,705	7,345	8,485	10,390	14,445	15,825	18,270	22,380
	(127)	(29.8)	(32.7)	(37.7)	(46.2)	(64.3)	(70.4)	(81.3)	(99.6)
	4	4,380	4,795	5,540	6,785	9,430	10,330	11,930	14,610
3/4	(102)	(19.5)	(21.3)	(24.6)	(30.2)	(41.9)	(45.9)	(53.1)	(65.0)
>y, →	6-1/4	9,345	10,235	11,820	14,475	20,125	22,045	25,455	31,175
	(159)	(41.6)	(45.5)	(52.6)	(64.4)	(89.5)	(98.1)	(113.2)	(138.7)

Table 3 - Hilti KWIK HUS-EZ design strength with concrete/pullout failure in cracked concrete^{1,2,3,4,5}

Nominal	Nominal		Tensio	n - φN _n			Shear	- φV _n	
anchor diameter	embed. in. (mm)	f' _c = 2,500 psi lb (kN)	f' = 3,000 psi lb (kN)	f' = 4,000 psi ib (kN)	f' = 6,000 psi lb (kN)	f' = 2,500 psi lb (kN)	f' _o = 3,000 psi lb (kN)	f' = 4,000 psi lb (kN)	f' = 6,000 psi lb (kN)
	1-5/8	300	315	345	390	765	835	965	1,180
4.44	(41)	(1.3)	(1.4)	(1.5)	(1.7)	(3.4)	(3.7)	(4.3)	(5.2)
1/4	2-1/2	760	830	960	1,175	1,585	1,735	2,000	2,450
	(64)	(3.4)	(3.7)	(4.3)	(5.2)	(7.1)	(7.7)	(8.9)	(10.9)
	1-5/8	475	520	600	730	695	760	880	1,080
	(41)	(2.1)	(2.3)	(2.7)	(3.2)	(3.1)	(3.4)	(3.9)	(4.8)
3/8	2-1/2	1,400	1,535	1,775	2,170	1,510	1,655	1,910	2,340
0,0	(64)	(6.2)	(6.8)	(7.9)	(9.7)	(6.7)	(7.4)	(8.5)	(10.4)
	3-1/4	2,185	2,390	2,765	3,385	4,705	5,155	5,950	7,285
	(83)	(9.7)	(10.6)	(12.3)	(15.1)	(20.9)	(22.9)	(26.5)	(32.4)
	2-1/4	1,035	1,135	1,310	1,605	1,115	1,220	1,410	1,725
	(57)	(4.6)	(5.0)	(5.8)	(7.1)	(5.0)	(5.4)	(6.3)	(7.7)
1/2	3	1,755	1,920	2,220	2,715	1,890	2,070	2,390	2,925
'/-	(76)	(7.8)	(8.5)	(9.9)	(12.1)	(8.4)	(9.2)	(10.6)	(13.0)
	4-1/4	3,190	3,495	4,040	4,945	6,875	7,530	8,695	10,650
	(108)	(14.2)	(15.5)	(18.0)	(22.0)	(30.6)	(33.5)	(38.7)	(47.4)
	3-1/4	2,040	2,235	2,580	3,165	2,200	2,410	2,780	3,405
5/8	(83)	(9.1)	(9.9)	(11.5)	(14.1)	(9.8)	(10.7)	(12.4)	(15.1)
9,5	5	4,225	4,625	5,340	6,540	9,095	9,965	11,505	14,090
	(127)	(18.8)	(20.6)	(23.8)	(29.1)	(40.5)	(44.3)	(51.2)	(62.7)
	4	2,755	3,020	3,485	4,270	5,940	6,505	7,510	9,200
3/4	(102)	(12.3)	(13.4)	(15.5)	(19.0)	(26.4)	(28.9)	(33.4)	(40.9)
5, 4	6-1/4	5,885	6,445	7,440	9,115	12,670	13,880	16,030	19,630
	(159)	(26.2)	(28.7)	(33.1)	(40.5)	(56.4)	(61.7)	(71.3)	(87.3)

¹ See section 3.1.8.6 to convert design strength value to ASD value.

1/4-in diameter by 1-5/8-in nominal embedment depth - α_{sels} = 0.60

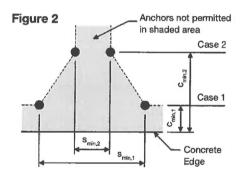
All other sizes - $\alpha_{seis} = 0.75$

² Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

³ Apply spacing, edge distance, and concrete thickness factors in table 6 to 15 as necessary. Compare to the steel values in table 4. The lesser of the values is to be used for the design

⁴ Tabular values are for normal weight concrete only. For lightweight concrete multiply design strength by λ_a as follows: for sand-lightweight, λ_a = 0.68; for all-lightweight, λ_a = 0.60

Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic tension loads, multiply cracked concrete tabular values in tension by the following reduction factors:


No reduction needed for seismic shear. See section 3.1.8.7 for additional information on seismic applications.

KWIK HUS-EZ (KH-EZ) Carbon Steel Screw Anchor 3.3.6

Table 4 - Steel design strength for Hilti KWIK HUS-EZ anchors^{1,2}

Nominal anchor diameter	Nominal embedment in. (mm)			Tensile φN _{sa} ³ lb (kN)	Shear φV _{sa} 4 lb (kN)	Seismic shear $\phi V_{sa,eq}^{5}$	
1/4	1-5/8		2-1/2	3,945	930	835	
1/4	(41)		(64)	(17.5)	(4.1)	(3.7)	
		1-5/8		5,980	2,200	2,200	
3/8		(41)		(26.6)	(9.8)	(9.8)	
0/0	2-1/2		3-1/4	6,720	3,110	1,865	
	(64)		(83)	(29.9)	(13.8)	(8.3)	
1/2	2-1/4	3	4-1/4	11,780	5,545	3,330	
1/2	(57)		(108)	(52.4)	(24.7)	(14.8)	
5/8	3-1/4	3-1/4 5		15,735	6,735	4,040	
3/0	(83)		(127)	(70.0)	(30.0)	(18.0)	
3/4	4		6-1/4	20,810	9,995	6,935	
5/4	(102)		(159)	(92.6)	(44.5)	(30.8)	

- See section 3.1.8.6 to convert design strength value to ASD value.
- 2 KWIK HUS-EZ anchors are to be considered brittle steel elements.
- 3 Tensile $\phi N_{sa} = \phi A_{se,N} f_{uta}$ as noted in ACI 318-14 Chapter 17.
- Shear values determined by static shear tests with $\phi V_{sa} < \phi 0.60 A_{se,V} f_{uta}$ as noted in ACI 318-14 Chapter 17. Seismic shear values determined by seismic shear tests with $\phi V_{sa,eq} < \phi 0.60 A_{se,V} f_{uta}$ as noted in ACI 318-14 Chapter 17. See section 3.1.8.7 for additional information on seismic applications.

For a specific edge distance, the permitted spacing is calculated as follows:

$$s \ge s_{min,2} + \frac{(s_{min,1} - s_{min,2})}{(c_{min,1} - c_{min,2})} (c - c_{min,2})$$

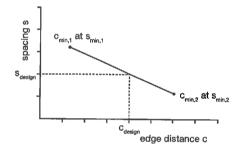


Table 5 - KWIK HUS-EZ specifications

Setting information	Symbol	Units					Nomi	inal and	hor dia	meter			·····	The second
	Cyllibol	Offica	1	/4		3/8			1/2		5	/8	3	/4
Effective minimum embedment	h _{ef}	in.	1.18	1.92	1.11	1.86	2.50	1.50	2.16	3.22	2.39	3.88	2.92	4.84
Minimum member thickness	h _{min}	in.	3-1/4	4.125	3-1/4	4	4-7/8	4-1/2	4 3/4	6-3/4	5	7	6	8-1/8
Case 1	C _{min,1}	in.			1.50						1.75			
Odde 1	for s _{min,1} ≥	in.				3	3					-	1	
ase 2	C _{min,2}	in.	2	2.78	2.63	2.92	3.75	2.75	3.75	5.25	3.63	5.81	4.41	7.28
0000 2	for s _{min,2} ≥	in.	1.	50		2.25					3			

¹ Linear interpolation is permitted to establish an edge distance and spacing combination between Case 1 and Case 2. Linear interpolation for a specific edge .distance c_i where $c_{min,1} < c < c_{min,2}$ will determine the permissible spacings.

3.3.6 KWIK HUS-EZ (KH-EZ) Carbon Steel Screw Anchor

Table 6 - Load adjustment factors for 1/4-in. diameter KWIK HUS-EZ in uncracked concrete¹²

	1/4-in. KH-E racked con		in ter	g factor nsion	factor in	istance tension	in sh	g factor near ³	⊥ towa	dge distar rd edge	II to	ar edge	factor i	hickness n shear ⁴
		in.	1-5/8	2-1/2	1-5/8	2-1/2	1-5/8	2-1/2	1-5/8	2-1/2	1-5/8	2-1/2	1-5/8	
Embed	lment h _{nom}	(mm)	(41)	(64)	(41)	(64)	(41)	(64)	(41)	(64)	(41)	(64)	(41)	2-1/2 (64)
	1-1/2	(38)	0.71	0.63	0.78	0.65	0.59	0.56	0.40	0.21	0.78	0.42	n/a	n/a
	2	(51)	0.78	0.67	1.00	0.77	0.62	0.58	0.61	0.33	1.00	0.65	n/a	n/a
	2-1/2	(64)	0.85	0.72		0.90	0.65	0.60	0.86	0.46		0.90	n/a	n/a
يو	3	(76)	0.92	0.76		1.00	0.68	0.62	1.00	0.60		1.00	n/a	n/a
(c,)/concrete mm)	3-1/4	(83)	0.96	0.78			0.70	0.63		0.68			0.88	n/a
8 _	3-1/2	(89)	0.99	0.80			0.71	0.64		0.76			0.92	n/a
ance (c,)/c - in. (mm)	4	(102)	1.00	0.85			0.74	0.66		0.92			0.98	n/a
9 =	4-1/8	(105)		0.86			0.75	0.66		0.97			1.00	0.81
distance (h) - in. (4-1/2	(114)		0.89			0.77	0.68		1.00				0.84
(2) Sign	5	(127)		0.93			0.80	0.70						0.89
	5-1/2	(140)		0.98			0.83	0.72						0.93
Spacing (s)/edge dist thickness (h)	6	(152)		1.00			0.86	0.74						0.97
(\$) ji	7	(178)					0.92	0.78						1.00
ji.	8	(203)					0.98	0.82						
gc	9	(229)					1.00	0.86						
S.	10	(254)						0.89						
	11	(279)						0.93						
	12	(305)						0.97						
	14	(356)						1.00						

Table 7 - Load adjustment factors for 1/4-in. diameter KWIK HUS-EZ in cracked concrete^{1,2}

			Spacin	g factor	Edge d	listance	Spacin	g factor	. E	dge distar	nce in shea	ar	Conc. tl	hickness
	I/4-in. KH-E		in ter	nsion	factor in	tension	in sh	near ^a	⊥ towa	rd edge	II to	edge	factor i	n shear⁴
cra	acked conc	rete	f	AN	f	RN	f	AV	f	RV	f	RV	f	HV
Fuels and		in.	1-5/8	2-1/2	1-5/8	2-1/2	1-5/8	2-1/2	1-5/8	2-1/2	1-5/8	2-1/2	1-5/8	2-1/2
Embed	ment h _{nom}	(mm)	(41)	(64)	(41)	(64)	(41)	(64)	(41)	(64)	(41)	(64)	(41)	(64)
	1-1/2	(38)	0.71	0.63	0.88	0.65	0.59	0.56	0.40	0.21	0.80	0.43	n/a	n/a
j	2	(51)	0.78	0.67	1.00	0.77	0.62	0.58	0.62	0.33	1.00	0.66	n/a	n/a
	2-1/2	(64)	0.85	0.72		0.90	0.65	0.60	0.87	0.46		0.90	n/a	n/a
و	3	(76)	0.92	0.76		1.00	0.68	0.62	1.00	0.60		1.00	n/a	n/a
distance (c _a)/concrete (h) - in. (mm)	3-1/4	(83)	0.96	0.78			0.70	0.63		0.68			0.89	n/a
S	3-1/2	(89)	0.99	0.80			0.71	0.64		0.76			0.92	n/a
(mm)	4	(102)	1.00	0.85			0.74	0.66		0.93			0.98	n/a
, e	4-1/8	(105)		0.86			0.75	0.66		0.97			1.00	0.81
ance - in.	4-1/2	(114)		0.89			0.77	0.68		1.00				0.85
(E)	5	(127)		0.93			0.80	0.70						0.89
	5-1/2	(140)		0.98			0.83	0.72						0.93
(s)/edge dist thickness (h)	6	(152)		1.00			0.86	0.74						0.98
thi(S)	7	(178)					0.92	0.78						1.00
ing	88	(203)					0.98	0.82						
Spacing (s)/edge thickness	9	(229)				_	1.00	0.86						
<i>ज</i>	10	(254)						0.90						
	11	(279)						0.94						
	12	(305)						0.98						
	14	(356)						1.00						

¹ Linear interpolation not permitted.

When combining multiple load adjustment factors (e.g. for a 4 anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

³ Spacing factor reduction in shear, f_{AV} assumes an influence of a nearby edge. If no edge exists, then $f_{AV} = f_{AN}$

⁴ Concrete thickness reduction factor in shear, f_{HV} assumes an influence of a nearby edge. If no edge exists, then f_{HV} = 1.0.

If a reduction factor value is in a shaded cell, this indicates that this specific edge distance may not be permitted with a certain spacing (or vice versa). Check with table 5 and figure 2 of this section to calculate permissable edge distance, spacing and concrete thickness combinations.

KWIK HUS-EZ (KH-EZ) Carbon Steel Screw Anchor 3.3.6

Table 8 - Load adjustment factors for 3/8-in. diameter KWIK HUS-EZ in uncracked concrete^{1,2}

			Sp	acing fac	ctor	Ed	ge dista	nce	Sp	acing fa	ctor		Ec	lge dista	nce in sh	ear		Conc.	thicknes	s factor
3/	/8-in. KH-	EZ	i	in tensio	n	fact	tor in ten	sion		in shear	3	<u>_</u> 1	oward e	dge		il to edg	е	1	in shear	4
uncra	acked co	ncrete		f_{AN}			f_{RN}			f_{AV}			f_{\scriptscriptstyleRV}			f_{\scriptscriptstyleRV}			f_{HV}	
Embedr	nent h	in.	1-5/8	2-1/2	3-1/4	1-5/8	2-1/2	3-1/4	1-5/8	2-1/2	3-1/4	1-5/8	2-1/2	3-1/4	1-5/8	2-1/2	3-1/4	1-5/8	2-1/2	3.1/4
Linboar	nom	(mm)	(41)	(64)	(83)	(41)	(64)	(83)	(41)	(64)	(83)	(41)	(64)	(83)	(41)	(64)	(83)	(41)	(64)	(83)
	1-1/2	(38)	n/a	n/a	n/a	0.58	0.63	0.57	n/a	n/a	n/a	0.49	0.25	0.08	0.58	0.50	0.17	n/a	n/a	n/a
	. 2	(51)	n/a	n/a	n/a	0.76	0.75	0.66	n/a	n/a	n/a	0.75	0.38	0.13	0.76	0.75	0.26	n/a	n/a	n/a
	2-1/4	(57)	0.84	0.70	0.65	0.86	0.81	0.70	0.65	0.60	0.55	0.90	0.46	0.16	0.90	0.81	0.31	n/a	n/a	n/a
	2-1/2	(64)	0.88	0.72	0.67	0,95	0.88	0.75	0.67	0.61	0.55	1.00	0.54	0.18	1.00	0.88	0.37	n/a	n/a	n/a
	3	(76)	0.95	0.77	0.70	1.00	1.00	0.85	0.71	0.63	0.56	1.00	0.71	0.24	1.00	1.00	0.48	n/a	n/a	n/a
æ	3-1/4	(83)	0.99	0.79	0.72			0.90	0.72	0.64	0.57		0.80	0.27			0.54	0.95	n/a	n/a
(c ₂)/concrete mm)	3-1/2	(89)	1.00	0.81	0.73			0.95	0.74	0.65	0.58		0.89	0.30			0.61	0.98	n/a	n/a
, Ç	4	(102)		0.86	0.77			1.00	0.78	0.68	0.59		1.00	0.37			0.74	1.00	0.84	n/a
ance (c ₂)/c - in. (mm)	4-1/2	(114)		0.90	0.80				0.81	0.70	0.60			0.44			0.88		0.89	n/a
	4-3/4	_(121)		0.93	0.82				0.83	0.71	0.60			0.48			0.96		0.91	0.64
	5	(127)		0.95	0.83				0.84	0.72	0.61			0.52			1.00		0.94	0.66
als (F)	6	(152)		1.00	0.90				0.91	0.76	0.63			0.68					1.00	0.72
(s)/edge dist thickness (h)	7	(178)			0.97				0.98	0.81	0.65			0.86						0.78
송왕	8	(203)			1.00				1.00	0.85	0.67			1.00						0.83
fi (s)	9	(229)								0.90	0.69									0.88
Spacing (s)/edge thickness	10	(254)								0.94	0.71									0.93
bad	11	(279)								0.98	0.74									0.97
0)	12	(305)								1.00	0.76									1.00
	14	(356)									0.80									
	16	(406)									0.84									
	18	(457)									0.89									
	20	(508)									0.93									
	24	(610)									1.00									

Table 9 - Load adjustment factors for 3/8-in. diameter KWIK HUS-EZ in cracked concrete^{1,2}

				acing fa			ge dista			acing fa				lge dista	nce in sh	ear		Conc.	thicknes	s facto
3/	'8-in. KH-	EZ		in tensio	n	fact	tor in ten	sion		in shear	3	⊥t	oward e	dge		II to edge	Ð		in shear	4
Crac	cked con	crete		f _{AN}			f _{an}			f_{AV}		<u></u>	$f_{\sf RV}$			f_{\scriptscriptstyleRV}			f_{HV}	
Embedn	nent h	in.	1-5/8	2-1/2	3-1/4	1-5/8	2-1/2	3-1/4	1-5/8	2-1/2	3-1/4	1-5/8	2-1/2	3-1/4	1-5/8	2-1/2	3-1/4	1-5/8	2-1/2	3-1/4
	nom	(mm)	(41)	(64)	(83)	(41)	(64)	(83)	(41)	(64)	(83)	(41)	(64)	(83)	(41)	(64)	(83)	(41)	(64)	(83)
	1-1/2	(38)	n/a	n/a	n/a	0.92	0.66	0.57	n/a	n/a	n/a	0.49	0.25	0.09	0.92	0.50	0.17	n/a	n/a	n/a
	2	(51)	n/a	n/a	n/a	1.00	0.79	0.66	n/a	n/a	n/a	0.76	0.39	0.13	1.00	0.77	0.26	n/a	n/a	n/a
	2-1/4	(57)	0.84	0.70	0.65	1.00	0.85	0.70	0.66	0.60	0.55	0.90	0.46	0.16	1.00	0.85	0.31	n/a	n/a	n/a
	2-1/2	(64)	0.88	0.72	0.67	1.00	0.92	0.75	0.67	0.61	0.55	1.00	0.54	0.18	1.00	0.92	0.37	n/a	n/a	n/a
	3	(76)	0.95	0.77	0.70	1.00	1.00	0.85	0.71	0.63	0.56	1.00	0.71	0.24	1.00	1.00	0.48	n/a	n/a	n/a
Đ.	3-1/4	(83)	0.99	0.79	0.72			0.90	0.73	0.64	0.57		0.80	0.27			0.55	0.95	n/a	n/a
S S	3-1/2	(89)	1.00	0.81	0.73			0.95	0.74	0.65	0.58		0.90	0.31			0.61	0.98	n/a	n/a
(c,)/concrete mm)	4	(102)		0.86	0.77			1.00	0.78	0.68	0.59		1.00	0.37		_	0.75	1.00	0.84	n/a
(mm)	4-1/2	(114)		0.90	0.80				0.81	0.70	0.60			0.44			0.89		0.89	n/a
nce (in. (n	4-3/4	(121)		0.93	0.82				0.83	0.71	0.60			0.48			0.97		0.92	0.64
an a	. 5	(127)		0.95	0.83				0.85	0.72	0.61			0.52			1.00		0.94	0.66
(s)/edge distance thickness (h) - in. (6	(152)		1.00	0.90				0.92	0.77	0.63	- 1		0.69					1.00	0.72
	7	(178)			0.97				0.98	0.81	0.65			0.86						0.78
多참	8	(203)			1.00				1.00	0.85	0.67			1.00						0.83
(s)	9	(229)								0.90	0.69									0.88
ing	10	(254)								0.94	0.72									0.93
Spacing (s)/edge thickness	11	(279)								0.99	0.74			_				Ï		0.97
S	12	(305)								1.00	0.76									1.00
	14	(356)									0.80									
	16	(406)									0.85									
	18	(457)									0.89									
	20	(508)									0.93									
	24	(610)									1.00	- 1		- 1						

- 1 Linear interpolation not permitted.
- When combining multiple load adjustment factors (e.g. for a 4 anchor pattern in a comer with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.
- 3 Spacing factor reduction in shear, f_{AV} assumes an influence of a nearby edge. If no edge exists, then $f_{\text{AV}} = f_{\text{AN}}$.
- 4 Concrete thickness reduction factor in shear, f_{HV} , assumes an influence of a nearby edge. If no edge exists, then f_{HV} = 1.0.
 - If a reduction factor value is in a shaded cell, this indicates that this specific edge distance may not be permitted with a certain spacing (or vice versa). Check table 5 and figure 2 of this section to calculate permissable edge distance, spacing and concrete thickness combinations.

3.3.6 KWIK HUS-EZ (KH-EZ) Carbon Steel Screw Anchor

Table 10 - Load adjustment factors for 1/2-in. diameter KWIK HUS-EZ in uncracked concrete^{1,2}

				acing fa		Ed	ge dista	nce	Sp	acing fa	ctor		Ec	dge dista	nce in sh	ear		Conc.	thicknes	s factor
1/	/2-in. KH-	EZ		in tensio	n	fact	or in ten	sion	1	in shear	3	⊥t	oward e	dga	1	II to edg	е]	in shear	-4
uncra	acked co	ncreta		f _{an}			$f_{\scriptscriptstyle RN}$			f_{AV}			$f_{\scriptscriptstyleFIV}$			f_{\scriptscriptstyleRV}			$f_{\sf HV}$	
Embedr	nent h _{rom}	in.	2-1/4	3	4-1/4	2-1/4	3	4-1/4	2-1/4	3	4-1/4	2-1/4	3	4-1/4	2-1/4	3	4-1/4	2-1/4	3	4-1/4
Lilibeat	nom	(mm)	(57)	(76)	(108)	(57)	(76)	(108)	(57)	(76)	(108)	(57)	(76)	(108)	(57)	(76)	(108)	(57)	(76)	(108)
	1-3/4	(44)	n/a	n/a	n/a	0.68	0.57	0.51	n/a	n/a	n/a	0.40	0.25	0.07	0.68	0.50	0.15	n/a	n/a	n/a
	2	(51)	n/a	n/a	n/a	0.75	0.62	0.54	n/a	n/a	n/a	0.48	0.31	0.09	0.75	0.61	0.18	n/a	n/a	n/a
	2-1/2	(64)	n/a	n/a	n/a	0.91	0.71	0.60	n/a	n/a	n/a	0.68	0.43	0.13	0.91	0.71	0.25	n/a	n/a	n/a
	3	(76)	0.83	0.73	0.66	1.00	0.81	0.66	0.65	0.61	0.55	0,89	0.56	0.17	1.00	0.81	0,33	n/a	n/a	n/a
40	3-1/2	(89)	0.88	0.77	0.68		0.93	0.73	0.68	0.63	0.56	1.00	0.71	0.21		0.93	0.42	n/a	n/a	n/a
(c,)/concrete mm)	4	(102)	0.94	0.81	0.71		1.00	0.80	0.71	0.65	0.57		0.87	0.26		1.00	0.52	n/a	n/a	n/a
20	4-1/2	(114)	0.99	0.85	0.73			0.87	0.73	0.67	0.58		1.00	0.31			0.62	0.96	n/a	n/a
Š F	4-3/4	(121)	1.00	0.87	0.75			0.91	0.74	0.68	0.58			0.33			0.67	0.99	0.85	n/a
	5	(127)		0.89	0.76			0.95	0.76	0.69	0.58			0.36			0.72	1.00	0.87	n/a
distance (h) - in. (6	(152)		0.96	0.81			1.00	0.81	0.73	0.60			0,47			0.95		0.95	n/a
fista (h) -	6-3/4	(171)		1.00	0.85				0.85	0.76	0.61			0.57			1.00		1.00	0.68
e di ss (7	(178)			0.86				0.86	0.77	0.62			0.60						0.69
(s)/edge c thickness	8	(203)			0.91				0.91	0.80	0.64			0.73						0.73
S S	9	(229)			0.97				0.96	0.84	0.65			0.87						0.78
ŋg ∓	10	(254)			1.00				1.00	0.88	0.67			1.00						0.82
Spacing	11	(279)								0.92	0.69									0.86
හි	12	(305)								0.95	0.70									0.90
	14	(356)								1.00	0.74									0.97
	16	(406)									0.77									1.00
	18	(457)									0.80									
	20	(508)				-					0.84									
	> 24	(610)									0.91									

Table 11 - Load adjustment factors for 1/2-in. diameter KWIK HUS-EZ in cracked concrete^{1,2}

			,	acing fa		1	ge dista			acing fa				lge dista	nce in sh	ear		Conc.	thicknes	s factor
1,	/2-in. KH-	EZ		in tensio	n	fact	tor in ten	sion		in shear	3	⊥t	oward e	dge		I to edg	е		in shear	4
cra	cked con	crete		f_{AN}			$f_{\sf RN}$			f_{AV}			$f_{_{RV}}$			f_{\scriptscriptstyleRV}		1	f_{\scriptscriptstyleHV}	
Embedr	nent h _{rom}	in.	2-1/4	3	4-1/4	2-1/4	3	4-1/4	2-1/4	3	4-1/4	2-1/4	3	4-1/4	2-1/4	3	4-1/4	2-1/4	3	4-1/4
Linboai	nom	(mm)	(57)	(76)	(108)	(57)	(76)	(108)	(57)	(76)	(108)	(57)	(76)	(108)	(57)	(76)	(108)	(57)	(76)	(108)
	1-3/4	(44)	n/a	n/a	n/a	0.82	0.66	0.55	n/a	n/a	n/a	0.45	0.28	0.08	0.82	0.57	0.17	n/a	n/a	n/a
	2	(51)	n/a	n/a	n/a	0.90	0.72	0.58	n/a	n/a	n/a	0.55	0.35	0.10	0.90	0.70	0.21	n/a	n/a	n/a
	2-1/2	(64)	n/a	n/a	n/a	1.00	0.83	0.65	n/a	n/a	n/a	0.77	0.49	0.14	1.00	0.83	0.29	n/a	n/a	n/a
	3	(76)	0.83	0.73	0.66	1.00	0.94	0.72	0.67	0.62	0.56	1.00	0.64	0.19	1.00	0.94	0.38	n/a	n/a	n/a
	3-1/2	(89)	0.88	0.77	0.68		1.00	0.79	0.70	0.64	0.56		0.80	0.24		1.00	0.48	n/a	n/a	n/a
(c _e)/concrete mm)	4	(102)	0.94	0.81	0.71		1.00	0.87	0.72	0.66	0.57		0.98	0.29		1.00	0.59	n/a	n/a	n/a
ž	4-1/2	(114)	0.99	0.85	0.73			0.95	0.75	0.69	0.58		1.00	0.35			0.70	1.00	n/a	n/a
Š F	4-3/4	(121)	1.00	0,87	0.75			0.99	0.77	0.70	0.59			0.38			0.76		0.88	n/a
	5	(127)		0.89	0.76			1.00	0.78	0.71	0.59			0.41			0.82		0.91	n/a
ე .⊑	6	(152)		0.96	0.81			1.00	0.84	0.75	0.61			0.54			1.00		0.99	n/a
star h).	6-3/4	(171)		1.00	0.85				0.88	0.78	0.62			0.64					1.00	0.70
ibe Ss (7	(178)			0.86				0.89	0.79	0.63			0.68						0.72
(s)/edge dist thickness (h)	- 8	(203)			0.91				0.95	0.83	0.65			0.83						0.77
s)/e	9	(229)			0.97				1.00	0.87	0.67			0.99						0.81
.gr ∓	10	(254)			1.00					0.91	0.68			1.00						0.86
Spacing	11	(279)								0.95	0.70									0.90
တ္ထ	12	(305)		_						0.99	0.72									0.94
	14	(356)								1.00	0.76									1.00
	16	(406)									0.79									
	18	(457)									0.83									
	20	(508)									0.87									
	> 24	(610)									0.94									

Linear interpolation not permitted.

² When combining multiple load adjustment factors (e.g. for a 4 anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

³ Spacing factor reduction in shear, f_{AV} , assumes an influence of a nearby edge. If no edge exists, then $f_{AV} = f_{AN}$

⁴ Concrete thickness reduction factor in shear, f_{HV} assumes an influence of a nearby edge. If no edge exists, then f_{HV} = 1.0.

If a reduction factor value is in a shaded cell, this indicates that this specific edge distance may not be permitted with a certain spacing (or vice versa). Check table 5 and figure 2 of this section to calculate permissable edge distance, spacing and concrete thickness combinations.

KWIK HUS-EZ (KH-EZ) Carbon Steel Screw Anchor 3.3.6

Table 12 - Load adjustment factors for 5/8-in. diameter KWIK HUS-EZ in uncracked concrete^{1,2}

			1 '	g factor		listance	Spacin	g factor	E	dge dista	nce in shea	ar	Conc. tl	nickness
	5/8-in. KH-I		in ter		factor in	tension	in sh	near ³	⊥ towa	rd edge	II to	edge	factor is	n shear4
unc	cracked con	crete	f	AN	f	RN	f	AV	f	RV	f	RV	f	HV
Embac	lment h _{nom}	in.	3-1/4	5	3-1/4	5	3-1/4	5	3-1/4	5	3-1/4	5	3-1/4	5
LINDEC	in citt i nom	(mm)	(83)	(127)	(83)	(127)	(83)	(127)	(83)	(127)	(83)	(127)	(83)	(127)
	1-3/4	(44)	n/a	n/a	0.62	0.51	n/a	n/a	0.24	0.06	0.47	0.13	n/a	n/a
	2	(51)	n/a	n/a	0.67	0.54	n/a	n/a	0.29	0.08	0.57	0.15	n/a	n/a
	2-1/2	(64)	n/a	n/a	0.76	0.59	n/a	n/a	0.40	0.11	0.76	0.21	n/a	n/a
	3	(76)	0.71	0.63	0.86	0.65	0.61	0.55	0.53	0.14	0.86	0.28	n/a	n/a
ete	3-1/2	(89)	0.74	0.65	0.97	0.70	0.63	0.55	0.66	0.18	0.97	0.35	n/a	n/a
(c_)/concrete mm)	4	(102)	0.78	0.67	1.00	0.76	0.65	0.56	0.81	0.22	1.00	0.43	n/a	n/a
Ş _	4-1/2	(114)	0.81	0.69		0.83	0.66	0.57	0.97	0.26		0.52	n/a	n/a
(c)/c (mm)	5	(127)	0.85	0.71		0.89	0.68	0.58	1.00	0.30		0.60	0.85	n/a
) <u>-</u>	5-1/2	(140)	0.88	0.74		0.96	0.70	0.58		0.35		0.70	0.89	n/a
distance s (h) - in. (6	(152)	0.92	0.76		1.00	0.72	0.59		0.40		0.80	0.93	n/a
sta - (-	7	(178)	0.99	0.80			0.75	0.61		0.50		1.00	1.00	0.65
di S (88	(203)	1.00	0.84			0.79	0.62		0.61			İ	0.69
age Jes	9	(229)		0.89			0.83	0.64		0.73				0.74
(s)/edge dist thickness (h)	10	(254)		0.93			0.86	0.65		0.86				0.78
(s) thi	11	(279)		0.97			0.90	0.67		0.99				0.81
Spacing	12	(305)		1.00			0.94	0.68		1.00	T			0.85
ac	14	(356)					1.00	0.71						0.92
Š	16	(406)						0.74		1				0.98
	18	(457)						0.77						1.00
	20	(508)						0.80						
	24	(610)						0.86						
	> 30	(762)						0.95						

Table 13 - Load adjustment factors for 5/8-in. diameter KWIK HUS-EZ in cracked concrete^{1,2}

				g factor		listance		g factor		dge dista	nce in she	ar	Conc. tl	nickness
	5/8-in. KH-I			nsion		tension		near ³	⊥ towa	rd edge	II to	edge	factor in	n shear⁴
cr	acked conc	rete	f	AN	f_1	RN	f	AV	f	RV	f	RV	f	HV
Ember	lment h _{nom}	in.	3-1/4	5	3-1/4	5	3-1/4	5	3-1/4	5	3-1/4	5	3-1/4	5
Linbec	IIII nom	(mm)	(83)	(127)	(83)	(127)	(83)	(127)	(83)	(127)	(83)	(127)	(83)	(127)
	1-3/4	(44)	n/a	n/a	0.63	0.51	n/a	n/a	0.27	0.07	0.53	0.14	n/a	n/a
]	2	(51)	n/a	n/a	0.68	0.54	n/a	n/a	0.33	0.09	0.65	0.17	n/a	n/a
	2-1/2	(64)	n/a	n/a	0.77	0.59	n/a	n/a	0.46	0.12	0.77	0.24	n/a	n/a
1	3	(76)	0.71	0.63	0.87	0.65	0.62	0.55	0.60	0.16	0.87	0.32	n/a	n/a
distance (c _e)/concrete (h) - in. (mm)	3-1/2	(89)	0.74	0.65	0.98	0.70	0.64	0.56	0.75	0.20	0.98	0.40	n/a	n/a
5 	4	(102)	0.78	0.67	1.00	0.76	0.66	0.57	0.92	0.25	1.00	0.49	n/a	n/a
8 _	4-1/2	(114)	0.81	0.69		0.83	0.68	0.57	1.00	0.29		0.59	n/a	n/a
nce (c _e)/(5	(127)	0.85	0.71		0.89	0.70	0.58		0.34		0.69	0.89	n/a
) S E	5-1/2	(140)	0.88	0.74		0.96	0.72	0.59		0.40		0.79	0.93	n/a
and in	6	(152)	0.92	0.76		1.00	0.74	0.60		0.45		0.90	0.97	n/a
sta (7	(178)	0.99	0.80			0.78	0.61		0.57		1.00	1.00	0.68
	8	(203)	1.00	0.84			0.82	0.63		0.69				0.72
(s)/edge thickness	9	(229)		0.89			0.86	0.65		0.83				0.77
§ §	10	(254)		0.93			0.89	0.66		0.97				0.81
th (s)	11	(279)		0.97			0.93	0.68		1.00				0.85
Spacing (12	(305)		1.00			0.97	0.70					_	0.89
ြ ရှင	14	(356)					1.00	0.73						0.96
ઝ	16	(406)				_		0.76			Ī			1.00
	18	(457)						0.79						
	20	(508)						0.83						
	24	(610)						0.89						
	> 30	(762)						0.99						$\neg \neg$

¹ Linear interpolation not permitted.

When combining multiple load adjustment factors (e.g. for a 4 anchor pattern in a comer with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

³ Spacing factor reduction in shear, f_{AV} , assumes an influence of a nearby edge. If no edge exists, then $f_{\text{AV}} = f_{\text{AN}}$.

⁴ Concrete thickness reduction factor in shear, f_{HV} , assumes an influence of a nearby edge. If no edge exists, then $f_{\text{HV}} = 1.0$.

If a reduction factor value is in a shaded cell, this indicates that this specific edge distance may not be permitted with a certain spacing (or vice versa). Check with table 5 and figure 2 of this section to calculate permissable edge distance, spacing and concrete thickness combinations.

Table 14 - Load adjustment factors for 3/4-in. diameter KWIK HUS-EZ in uncracked concrete 1,2

					1	110101								
				g factor		listance		g factor	E	dge distar	nce in she	ar	Conc. tl	nickness
	3/4-in. KH-i		1	nsion		tension	in sl	near³	⊥ towa	rd edge	II to	edge	factor i	n shear4
unc	racked con	crete	f	AN	f	RN	f	AV	f	RV	f	RV	f	HV
Embed	ment h _{nom}	in.	4	6-1/4	4	6-1/4	4	6-1/4	4	6-1/4	4	6-1/4	4	6-1/4
LIIIDEG	III CIII II nom	(mm)	(102)	(159)	(102)	(159)	(102)	(159)	(102)	(159)	(102)	(159)	(102)	(159)
	1-3/4	(44)	n/a	n/a	0.57	0.48	n/a	n/a	0.10	0.05	0.19	0.10	n/a	n/a
	2	(51)	n/a	n/a	0.61	0.50	n/a	n/a	0.12	0.06	0.23	0.12	n/a	n/a
	2-1/2	(64)	n/a	n/a	0.68	0.54	n/a	n/a	0.16	0.08	0.33	0.17	n/a	n/a
	3	(76)	0.67	0.60	0.76	0.58	0.56	0.54	0.21	0.11	0.43	0.22	n/a	n/a
	3-1/2	(89)	0.70	0.62	0.84	0.62	0.57	0.55	0.27	0.14	0.54	0.28	n/a	n/a
ete	4	(102)	0.73	0.64	0.93	0.67	0.58	0.55	0.33	0.17	0.66	0.34	n/a	n/a
Spacing (s)/edge distance (c _a)/concrete thickness (h) - in. (mm)	4-1/2	(114)	0.76	0.65	1.00	0.72	0.59	0.56	0.39	0.20	0.79	0.41	n/a	n/a
00	5	(127)	0.79	0.67		0.76	0.60	0.56	0.46	0.24	0.92	0.48	n/a	n/a
(c²)/c (mm)	5-1/2	(140)	0.81	0.69		0.81	0.61	0.57	0.53	0.28	1.00	0.55	n/a	n/a
e (6	(152)	0.84	0.71		0.86	0.62	0.58	0.61	0.31		0.63	0.69	n/a
in.	7	(178)	0.90	0.74		0.97	0.64	0.59	0.77	0.40		0.79	0.75	n/a
sta h) -	8	(203)	0.96	0.78		1.00	0.66	0.60	0.94	0.48		0.97	0.80	n/a
(s)/edge dist thickness (h)	8-1/8	(206)	0.96	0.78			0.66	0.60	0.96	0.50		0.99	0.80	0.65
ge l	9	(229)	1.00	0.81			0.68	0.62	1.00	0.58		1.00	0.85	0.68
홍봉	10	(254)		0.84			0.70	0.63		0.68			0.89	0.72
(S)	11	(279)		0.88			0.72	0.64		0.78			0.94	0.75
Ë,	12	(305)		0.91			0.74	0.65		0.89			0.98	0.79
g	14	(356)		0.98			0.78	0.68		1.00			1.00	0.85
8	16	(406)		1.00			0.82	0.71						0.91
	18	(457)					0.86	0.73						0.96
	20	(508)					0.90	0.76						1.00
]	24	(610)					0.98	0.81						
	30_	(762)					1.00	0.89						
	> 36	(914)						0.96						

Table 15 - Load adjustment factors for 3/4-in. diameter KWIK HUS-EZ in cracked concrete^{1,2}

				g factor		listance		g factor		dge distar	nce in she	ar	Conc. t	hickness
	3/4-in. KH-E			nsion	1	tension		near³	⊥ towa	rd edge	II to	edge	factor i	n shear⁴
cr	acked conc	rete	f	AN	f	RN	f	AV	f	RV	f	RV	f	HV
Ember	lment h _{nom}	in.	4	6-1/4	4	6-1/4	4	6-1/4	4	6-1/4	4	6-1/4	4	6-1/4
LITIDOC	III OIII II nom	(mm)	(102)	(159)	(102)	(159)	(102)	(159)	(102)	(159)	(102)	(159)	(102)	(159)
	1-3/4	(44)	n/a	n/a	0.57	0.48	n/a	n/a	0.11	0.06	0.22	0.11	n/a	n/a
	2	(51)	n/a	n/a	0.61	0.50	n/a	n/a	0.13	0.07	0.27	0.14	n/a	n/a
	2-1/2	(64)	n/a	n/a	0.68	0.54	n/a	n/a	0.19	0.10	0.37	0.19	n/a	n/a
	3	(76)	0.67	0.60	0.76	0.58	0.57	0.54	0.24	0.13	0.49	0.25	n/a	n/a
	3-1/2	(89)	0.70	0.62	0.85	0.63	0.58	0.55	0.31	0.16	0.61	0.32	n/a	n/a
(c _a)/concrete mm)	4	(102)	0.73	0.64	0.93	0.67	0.59	0.56	0.38	0.19	0.75	0.39	n/a	n/a
ည်	4-1/2	(114)	0.76	0.65	1.00	0.72	0.60	0.56	0.45	0.23	0.90	0.46	n/a	n/a
Ö.	5	(127)	0.79	0.67		0.77	0.61	0.57	0.52	0.27	1.00	0.54	n/a	n/a
(mm)	5-1/2	(140)	0.81	0.69		0.81	0.62	0.58	0.60	0.31		0.63	n/a	n/a
₩ E	6	(152)	0.84	0.71		0.87	0.63	0.58	0.69	0.36		0.71	0.72	n/a
distance s (h) - in. (7	(178)	0.90	0.74		0.97	0.65	0.60	0.87	0.45		0.90	0.78	n/a
sta 1) -	8	(203)	0.96	0.78		1.00	0.67	0.61	1.00	0.55		1.00	0.83	n/a
di S	8-1/8	(206)	0.96	0.78			0.68	0.61		0.56			0.84	0.67
(s)/edge dist thickness (h)	9	(229)	1.00	0.81		I	0.70	0.63		0.66			0.88	0.71
ર્કે કે	10	(254)		0.84			0.72	0.64		0.77			0.93	0.75
(S)	11	(279)		0.88			0.74	0.65		0.89			0.98	0.78
Spacing (s)/edge thickness	12	(305)		0.91			0.76	0.67		1.00			1.00	0.82
ac	14	(356)		0.98			0.80	0.70						0.89
છું	16	(406)		1.00			0.85	0.72						0.95
	18	(457)					0.89	0.75						1.00
	20	(508)					0.93	0.78						
	24	(610)					1.00	0.84						
	30	(762)						0.92						
	> 36	(914)						1.00						

¹ Linear interpolation not permitted.

When combining multiple load adjustment factors (e.g. for a 4 anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hilti PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

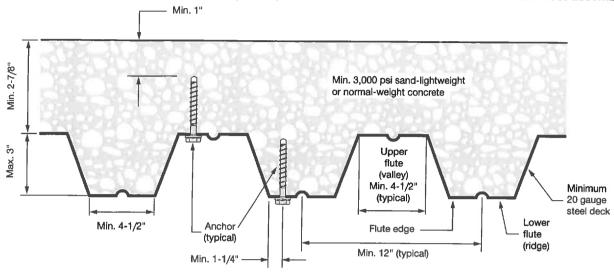
Spacing factor reduction in shear, f_{AV} assumes an influence of a nearby edge. If no edge exists, then $f_{AV} = f_{AN}$

⁴ Concrete thickness reduction factor in shear, f_{HV} assumes an influence of a nearby edge. If no edge exists, then f_{HV} = 1.0.

If a reduction factor value is in a shaded cell, this indicates that this specific edge distance may not be permitted with a certain spacing (or vice versa). Check with table 5 and figure 2 of this section to calculate permissable edge distance, spacing and concrete thickness combinations.

Table 16 - Hilti KWIK HUS-EZ in the soffit of uncracked lightweight concrete over metal deck^{1,2,3,4,5,6,7}

			Installation	n lower flute			Installation i	n upper flute	
Nominal	Nominal	Tensio	n - φN _n	Shear	' - φV _n	Tensio	л - фN _n	Shear	r - φV <u>,</u>
anchor diameter	embedment in. (mm)	f' = 3,000 psi lb (kN)	f' _c = 4,000 psi lb (kN)	f' = 3,000 psi lb (kN)	f' = 4,000 psi lb (kN)	f' = 3,000 psi lb (kN)	f' = 4,000 psi lb (kN)	f' = 3,000 psi lb (kN)	f' = 4,000 ps lb (kN)
	1-5/8	545	595	725	725	670	730	725	725
1/4	(41)	(2.4)	(2.6)	(3.2)	(3.2)	(3.0)	(3.2)	(3.2)	(3.2)
1/4	2-1/2	1,220	1,410	1,325	1,325	1,275	1,470	1,960	1,960
	(64)	(5.4)	(6.3)	(5.9)	(5.9)	(5.7)	(6.5)	(8.7)	(8.7)
	1-5/8	845	975	905	905	970	1,120	2,200	2,200
	(41)	(3.8)	(4.3)	(4.0)	(4.0)	(4.3)	(5.0)	(9.8)	(9.8)
3/8	2-1/2	1,455	1,680	905	905	1,900	2,195	3,655	3,655
3/0	(64)	(6.5)	(7.5)	(4.0)	(4.0)	(8.5)	(9.8)	(16.3)	(16.3)
	3-1/4	2,550	2,945	2,165	2,165	- 4-	-4		
	(83)	(11.3)	(13.1)	(9.6)	(9.6)	n/a	n/a	n/a	n/a
	2-1/4	850	980	965	965	905	1,045	4,710	4,710
	(57)	(3.8)	(4.4)	(4.3)	(4.3)	(4.0)	(4.6)	(21.0)	(21.0)
1/2	3	1,990	2,300	1,750	1,750	- 4-			
1/2	(76)	(8.9)	(10.2)	(7.8)	(7.8)	n/a	n/a	n/a	n/a
	4-1/4	3,485	4,025	2,155	2,155		- /-		,
	(108)	(15.5)	(17.9)	(9.6)	(9.6)	n/a	n/a	n/a	n/a
	3-1/4	2,715	3,135	2,080	2,080	- (-	- (-		
5/8	(83)	(12.1)	(13.9)	(9.3)	(9.3)	n/a	n/a	n/a	n/a
3/0	5	6,170	7,125	2,515	2,515	- 1-	- 4		
	(127)	(27.4)	(31.7)	(11.2)	(11.2)	n/a	n/a	n/a	n/a
3/4	4	2,715	3,135	2,255	2,255	7 (0	- 6	- /-	
3/4	(102)	(12.1)	(13.9)	(10.0)	(10.0)	n/a	n/a	n/a	n/a


Table 17 - Hilti KWIK HUS-EZ in the soffit of cracked lightweight concrete over metal deck^{1,2,3,4,5,6}

			Installation i	n lower flute			Installation i	n upper flute	
Nominal	Nominal	Tension	n - φN _n ⁷	Shear	- φV _n ^{7,8}	Tensio	n - φN _n ⁷	Shear	- φV ₂ ,8
anchor diameter	embedment in. (mm)	f' = 3,000 psi lb (kN)	f' = 4,000 psi lb (kN)	f' _c = 3,000 psi lb (kN)	f' = 4,000 psi lb (kN)	f' = 3,000 psi lb (kN)	f' = 4,000 psi lb (kN)	f' = 3,000 psi lb (kN)	f' = 4,000 ps lb (kN)
	1-5/8	280	305	725	725	340	370	725	725
1/4	(41)	(1.2)	(1.4)	(3.2)	(3.2)	(1.5)	(1.6)	(3.2)	(3.2)
1/4	2-1/2	605	700	1,325	1,325	635	735	1,960	1,960
	(64)	(2.7)	(3.1)	(5.9)	(5.9)	(2.8)	(3.3)	(8.7)	(8.7)
	1-5/8	525	605	905	905	770	890	2,200	2,200
	(41)	(2.3)	(2.7)	(4.0)	(4.0)	(3.4)	(4.0)	(9.8)	(9.8)
3/8	2-1/2	1,035	1,195	905	905	1,345	1,555	3,655	3,655
3/0	(64)	(4.6)	(5.3)	(4.0)	(4.0)	(6.0)	(6.9)	(16.3)	(16.3)
	3-1/4	1,805	2,085	2,165	2,165	- 4-			
	(83)	(8.0)	(9.3)	(9.6)	(9.6)	n/a	п/а	n/a	n/a
	2-1/4	535	620	965	965	640	740	4,710	4,710
	(57)	(2.4)	(2.8)	(4.3)	(4.3)	(2.8)	(3.3)	(21.0)	(21.0)
1/2	3	1,255	1,450	1,750	1,750	- 10	- /-	- 4-	
1/2	(76)	(5.6)	(6.4)	(7.8)	(7.8)	n/a	n/a	n/a	n/a
	4-1/4	2,195	2,535	2,155	2,155	- /-	- 1-	-/-	
	(108)	(9.8)	(11.3)	(9.6)	(9.6)	n/a	n/a	n/a	п/а
	3-1/4	1,710	1,975	2,080	2,080	- 6	- (-	,	
5/8	(83)	(7.6)	(8.8)	(9.3)	(9.3)	n/a	n/a	п/а	n/a
3/6	5	3,885	4,485	2,515	2,515	7/2	- 1-	- 6	
	(127)	(17.3)	(20.0)	(11.2)	(11.2)	n/a	n/a	n/a	n/a
3/4	4	1,710	1,975	2,255	2,255	2/2	7/2		- 4-
3/4	(102)	(7.6)	(8.8)	(10.0)	(10.0)	n/a	n/a	n/a	n/a

- See saction 3.1.8.6 to convert design strength value to ASD valua.
- Linear interpolation between ambedment depths and concrete compressive strengths is not permitted.
- Tabular value is for one anchor per flute. Minimum spacing along the length of the flute is $3 \times h_{nom}$ (nominal embedment).
- Tabular values are lightweight concrete and no additional reduction factor is needed.
- No additional reduction factors for spacing or edge distanca need to ba applied.
- Comparison to steel values in table 4 is not required. Values in tables 16 and 17 control.
- Tabular values ara for static loads only. Seismic design is not permitted for uncracked concrete. For seismic tension loads, multiply cracked concrete tabular values in tension only by $\alpha_{N,seis}=0.75$. Saa section 3.1.8.7 for additional information on seismic applications.
- For the following anchor sizes, an additional factor for seismic shear must be applied to the cracked concrate tabular values for seismic conditions:

 - $\begin{array}{l} 1/4\text{-inch diameter} \quad \alpha_{\text{v,sels}} = 0.75 \\ 3/8\text{-inch diameter} \quad \alpha_{\text{v,sels}} = 0.60 \\ 1/2\text{-inch diameter} \quad \alpha_{\text{v,sels}} = 0.60 \\ 5/8\text{-inch diameter} \quad \alpha_{\text{v,sels}} = 0.60 \\ 3/4\text{-inch diameter} \quad \alpha_{\text{v,sels}} = 0.70 \\ \end{array}$

Figure 3 - Installation of KWIK HUS-EZ (KH-EZ) in soffit of concrete over steel deck floor and roof assemblies¹

¹ Anchors may be placed in the upper or lower flute of the steel deck profile provided the minimum concrete cover above the drilled hole is satisfied. Anchors in the lower flute may be installed with a maximum 1-inch offset in either direction from the center of the flute. The offset distance may be increased proportionally for profiles with lower flute widths greater than those shown provided the minimum lower flute edge distance is also satisfied.

Figure 4 - Installation of KWIK HUS-EZ on the top of sand-lightweight concrete over metal floor and roof assemblies

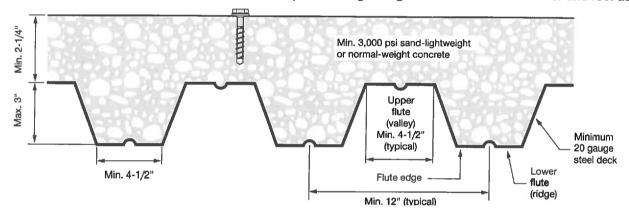


Table 18 - Hilti KWIK HUS-EZ in the top of uncracked concrete over metal deck^{1,2,3,4,5}

	Nominal	Tensio	n - фN _n	Shear	r - фV _n
Nominal anchor diameter	embed. depth in. (mm)	f' c = 3,000 psi (20.7 MPa) lb (kN)	f' = 4,000 psi (27.6 MPa) lb (kN)	f' = 3,000 psi (20.7 MPa) Ib (kN)	f' = 4,000 psi (27.6 MPa) lb (kN)
1/4	1-5/8	620	675	1,180	1,360
1/4	(41)	(2.8)	(3.0)	(5.2)	(6.0)
3/8	1-5/8	1,000	1,155	1,075	1,245
	(41)	(4.4)	(5.1)	(4.8)	(5.5)

Table 19 - Hilti KWIK HUS-EZ in the top of cracked concrete over metal deck1,2,3,4,5

	Nominal	Tensio	n - фN _n	Shear	r - φV _n
Nominal anchor diameter	embed. depth in. (mm)	f'c = 3,000 psi (20.7 MPa) lb (kN)	f' = 4,000 psi (27.6 MPa) lb (kN)	f' = 3,000 psi (20.7 MPa) lb (kN)	f'c = 4,000 psi (27.6 MPa) lb (kN)
1/4	1-5/8	315	345	835	965
1/4	(41)	(1.4)	(1.5)	(3.7)	(4.3)
3/8	1-5/8	520	600	760	880
3/6	(41)	(2.3)	(2.7)	(3.4)	(3.9)

- 1 See section 3.1.8.6 to convert design strength value to ASD value.
- 2 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.
- 3 Apply spacing, edge distance, and concrete thickness factors in tables 20 and 21 as necessary. Compare to the steel values in table 4. The lesser of the values is to be used for the design.
- 4 Tabular values are for normal weight concrete only. For lightweight concrete multiply design strength by λa
 - for sand-lightweight, $\lambda_a = 0.68$; for all-lightweight, $\lambda_a = 0.60$
- Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic tension loads, multiply cracked concrete tabular values in tension by the following reduction factors:
 - 1/4-inch diameter $\alpha_{N,seis} = 0.60$ 3/8-inch diameter $\alpha_{N,seis} = 0.75$.

No reduction needed for seismic shear. See section 3.1.8.7 for additional information on seismic applications.

Table 20 - Load adjustment factors for KWIK HUS-EZ in the top of uncracked concrete over metal deck1-2

1/4	-in. and 3	/8-in.							E	dge distar	nce in shea	er		<u>.</u>
	KH-EZ racked cor rer metal o	ncrete	in tei	g factor nsion	factor in	istance tension	in sl	g factor near ³	⊥ towa	rd edge	II to	edge	factor i	hickness n shear ⁴
				Γ						RV		RV	,	HV
	ichor ieter d _a	in. (mm)	1/4 (6.4)	3/8 (9.5)	1/4 (6.4)	3/8 (9.5)	1/4 (6.4)	3/8 (9.5)	1/4 (6.4)	3/8 (9.5)	1/4 (6.4)	3/8 (9.5)	1/4 (6.4)	3/8 (9.5)
No embe	minal ed. h _{nom}	in. (mm)	1-5/8 (41)	1-5/8 (41)	1-5/8 (41)	1-5/8 (41)	1-5/8 (41)	1-5/8 (41)	1-5/8 (41)	1-5/8 (41)	1-5/8 (41)	1-5/8 (41)	1-5/8 (41)	1-5/8 (41)
	1-3/4	(44)	n/a	n/a	0.44	0.58	n/a	n/a	0.44	0.58	0.44	0.58	n/a	n/a
	2	(51)	п/а	n/a	0.50	0.67	n/a	n/a	0.50	0.67	0.50	0.67	n/a	n/a
distance (c _a)/concrete s (h) - in. (mm)	2-1/2	(64)	n/a	n/a	0.63	0.83	n/a	n/a	0.63	0.83	0.63	0.83	0.78	0.83
200	3	(76)	0.92	0.95	0.75	1.00	0.68	0.71	0.75	1.00	0.75	1.00	0.85	0.91
≥ €	3-1/4	(83)	0.96	0.99	0.81		0.70	0.72	0.81		0.81			
(mm)	3-1/2	(89)	0.99	1.00	0.88		0.71	0.74	0.88		0.88			
ance - in.	4	(102)	1.00		1.00		0.74	0.78	1.00		1.00			
sta h)	4-1/2	(114)					0.77	0.81						
(s)/edge dist thickness (h)	5	(127)					0.80	0.84						
g ë	5-1/2	(140)					0.83	0.88						
% \(\frac{1}{2} \)	6	(152)					0.86	0.91						
g [‡]	6-1/2	(165)					0.89	0.95						
Spacing (s)/edge thickness	7	(178)					0.92	0.98						
g,	7-1/2	(191)					0.95	1.00						
	8	(203)					0.98							
	9	(229)					1.00							

Table 21 - Load adjustment factors for KWIK HUS-EZ in the top of cracked concrete over metal deck12

1/4	-in. and 3,	/8-in.							E	dge distar	nce in she	ar		
	KH-EZ acked col er metal c		in te	g factor nsion ^{AN}	factor in	istance tension	in sl	g factor near ³	_	rd edge		edge _{RV}	factor i	nickness n shear⁴ ^{нv}
	chor eter d _a	in. (mm)	1/4 (6.4)	3/8 (9.5)	1/4 (6.4)	3/8 (9.5)	1/4 (6.4)	3/8 (9.5)	1/4 (6.4)	3/8 (9.5)	1/4 (6.4)	3/8 (9.5)	1/4 (6.4)	3/8 (9.5)
No embe	minal ed. h _{nom}	in. (mm)	1-5/8 (41)	1-5/8 (41)	1-5/8 (41)	1-5/8 (41)	1-5/8 (41)	1-5/8 (41)	1-5/8 (41)	1-5/8 (41)	1-5/8 (41)	1-5/8 (41)	1-5/8 (41)	1-5/8 (41)
	1-3/4	(44)	n/a	n/a	0.99	1.00	n/a	n/a	0.51	0.62	0.99	1.00	n/a	n/a
0	2	(51)	n/a	n/a	1.00		n/a	n/a	0.62	0.76	1.00		n/a	n/a
distance (c_)/concrete s (h) - in. (mm)	2-1/2	(64)	n/a_	n/a			n/a	n/a	0.87	1.00			0.78	0.83
Įĕ	3	(76)	0.92	0.95			0.68	0.71	1.00				0.85	0.91
(mm)	3-1/4	(83)	0.96	0.99			0.70	0.73						
의 트	3-1/2	(89)	0.99	1.00			0.71	0.74						
ance - in.	4	(102)	1.00				0.74	0.78						
dista (r)	4-1/2	(114)					0.77	0.81						
e d	5	(127)					0.80	0.85						
(s)/edge c thickness	5-1/2	(140)					0.83	0.88		_				
s)/e	6	(152)					0.86	0.92						
ng (6-1/2	(165)					0.89	0.95						
Spacing (s)/edge thickness	7	(178)					0.92	0.98						
Sp	7-1/2	(191)					0.95	1.00						
	8	(203)					0.98							
	9	(229)					1.00							

¹ Linear interpolation not permitted.

When combining multiple load adjustment factors (e.g. for a 4 anchor pattern in a corner with thin concrete member) the design can become very conservative. To optimize the design, use Hiltl PROFIS Anchor Design software or perform anchor calculation using design equations from ACI 318-14 Chapter 17.

³ Spacing factor reduction in shear, f_{AV} , assumes an influence of a nearby edge. If no edge exists, then $f_{AV} = f_{AN}$.

⁴ Concrete thickness reduction factor in shear, f_{HV} , assumes an influence of a nearby edge. If no edge exists, then f_{HV} = 1.0.

⁻ For concrete thickness greater than or equal to 3-1/4-inches, the anchor can be designed using either table 2 or table 3 of this section.

3.3.6.3.2 Canadian Limit State design

Limit State Design of anchors is described in the provisions of CSA A23.3-14 Annex D for post-installed anchors tested and assessed in accordance with ACI 355.2 for mechanical anchors and ACI 355.4 for adhesive anchors. This section contains the Limit State Design tables with unfactored characteristic loads that are based on the published loads in ICC Evaluation Services ESR-3027. These tables are followed by factored resistance tables. The factored resistance tables have characteristic design loads that are prefactored by the applicable reduction factors for a single anchor with no anchor-to-anchor spacing or edge distance adjustments for the convenience of the user of this document. All the figures in the previous ACI 318-14 Chapter 17 design section are applicable to Limit State Design and the tables will reference these figures.

For a detailed explanation of the tables developed in accordance with CSA A23.3-14 Annex D, refer to Section 3.1.8. Technical assistance is available by contacting Hilti Canada at (800) 363-4458 or at www.hilti.ca

Table 22 - Steel resistance for Hilti KWIK HUS-EZ carbon steel screw anchor¹² ▶

Nominal anchor diameter	Nom	inal emb in. (mm		Tensile N _{sar} ³ Ib (kN)	Shear V _{sa} ⁴ Ib (kN)	Seismic shear V _{sar,eq} Ib (kN)				
1/4	1-5/8		2-1/2	3,370	855	770				
',-	(41)		(64)	(15.0)	(3.8)	(3.4)				
l		1-5/8		5,475	2,025	2,025				
3/8		(41)		(24.4)	(9.0)	(9.0)				
3,0	2-1/2		3-1/4	6,150	2,865	1,720				
	(64)		(83)	(27.4)	(12.7)	(7.7)				
1/2	2-1/4	3	4-1/4	10,780	5,110	3,065				
1/2	(57)	(76)	(108)	(48.0)	(22.7)	(13.6)				
5/0	3-1/4 5				3-1/4 5		3-1/4 5		6,200	3,720
5/8	(83)		(127)	(64.1)	(27.6)	(16.5)				
3/4	4		6-1/4	19,050	9,205	6,385				
3/4	(102)		(159)	(84.7)	(40.9)	(28.4)				

- 1 See section 3.1.8.6 to convert design strength value to ASD value.
- 2 Hilti KWIK HUS-EZ carbon steel screw anchors are to be considered brittle steel elements.
- 3 Tensile $N_{sar} = A_{se,N} \phi_s f_{ute} R$ as noted in CSA A23.3-14 Annex D.
- 4 Shear determined by static shear tests with V_{sor} < A_{se,V} φ_s 0.6 f_{uta} R as noted in CSA A23.3-14 Annex D.
- 5 Seismic shear values determined by seismic shear tests with V_{sar,eq} < A_{so,v} φ_s 0.6 f_{uts} R as noted in CSA A23.3-14 Annex D. See section 3.1.8.7 for additional information on seismic applications.

Table 23 - KWIK HUS-EZ design information in accordance with CSA A23.3-14 Annex D1

*

	T	T					Nom	inal arc	hor dia	meter					Def		
Design parameter	Symbo	Units	<u> </u>	1/4	1	3/8	пон	miai and	nor diai	neter		5/8	-	3/4	Ref A23.3-14		
		in.		1/4		3/8			1/2		 	5/8		3/4	A23.3-14		
Nominal anchor diameter	ď	(mm)	1	i.4)	1	(9.5)			(12.7)			5,9)	1	9.1)			
Fifty all the second and the second	١.	in.	1.18	1.92	1.11	1.86	2.50	1.52	2.16	3.22	2.39	3.88	2.92	4.84	_		
Effective embedment ²	h _{ef}	(mm)	(30)	(49)	(28)	(47)	(64)	(39)	(55)	(82)	(61)	(99)	(74)	(123)	ļ		
Min, nominal embedment ²	1.	in.	1-5/8	2-1/2	1-5/8	2-1/2	3-1/4	2-1/4	3	4-1/4	3-1/4	5	4	6-1/4	 		
Willi. nominal embedment	h _{nom}	(mm)	(41)	(64)	(41)	(64)	(83)	(57)	(76)	(108)	(83)	(127)	(102)	(159)			
Minimum concrete thickness ³	h	in.	3-1/4	4-1/8	3-1/4	4	4-3/4	4-1/2	4-3/4	6-3/4	5	7	6	8-1/8			
TAIL THE CONCRETE LINCKIESS	h _{min}	(mm)	(82.6)	(83)	(105)	(83)	(121)	(114)	(121)	(171)	(127)	(178)	(152)	(206)			
Critical edge distance	C _{ac}	in.	2	2.78	2.63	2.92	3.75	2.75	3.75	5.25	3.63	5.82	4.41	7.28			
	ac	(mm)	(51)	(71)	(67)	(74)	(95)	(70)	(95)	(133)	(92)	(148)	(112)	(185)	L		
Minimum spacing at critical edge	S _{min,cac}	in.		.5	l	2.25		ľ			3				ĺ		
distance	min,cac	(mm)		18)	_	(57)					(76)						
Minimum edge distance	C _{min}	in.	J	50							1.75						
h diminutes and have a series	-	(mm)	'	(8)							(44)						
MInimum anchor spacing at minimum edge distance	for s >	in. (mm)	i i	.0 (6)	1								‡ 20\		ĺ		
-	1	in.	2	2-7/8	1-7/8	2-3/4	3-1/2	2-5/8	3-3/8	4 E /0	2 5/0	(10		10.50			
Mininimum hole depth in concrete	h _o	(mm)	(51)	(73)	(48)	(70)	(89)	(67)	(86)	4-5/8 (117)	3-5/8 (92)	5-3/8 (137)	4-3/8	6-5/8			
Minimum specified		psi	· · ·	,000	106,975	120.	_ ' _	. ,	112,540	(117)		180	(111)	(168) 600	 		
ultimate strength	f _{uta}	(N/mm²)		30)	(738)	(82			(776)			22)	(56				
F# - 1 - 1 - 1		in ²	0.0		()	0.086	,		0.161						_		
Effective tensile stress area	A _{se,N}	(mm²)	(29	.0)		(55.5)			(103.9)		0.268 0.392 (172.9) (252.9)						
Steel embed. material resistance factor for reinforcement	ф	-	,					3.0	, ,		((20)		8.4.3		
Resistance modification factor for	R	_						0.7							D = 0		
tension, steel failure modes4									·		_				D.5.3		
Resistance modification factor for shear, steel failure modes ⁴	R	-						0.6	5						D.5.3		
Factored steel resistance in tension	N _{sar}	lb	3,370 (15.0)		5,475	6,1	50	10,780		·		· ·		405	19,0	050	D.6.1.2
	sar	(kN)			(25.0)	(25			(50.0)		(65		(85	.0)	D.6.1.2		
Factored steel resistance in shear	V _{sar}	lb	1,5		3,669	5,1			9,245		11,2		16,6		D.7.1.2		
		(kN)	(6.		(15.0)	(25.			(40.0)		(50		(75		D.7.11.2		
Factored steel resistance in shear, seismic	V _{sar,eq}	lb lb	76		2,025	1,7			3,505	- 1	37		7,4				
Coeff. for factored conc. breakout		(kN)	(3.	4)	(9.0)	(7.	5)		(13.6)		(16	.5)	(28	.4)			
resistance, uncracked concrete	k _{c,uncr}	lb						10)						D.6.2.2		
Coeff. for factored conc. breakout resistance, cracked concrete	k _{c,cr}	-						7							D.6.2.2		
Modification factor for anchor resistance, tension, uncracked concrete ⁵	Ψ _{c,N}	-						1.0)						D.6.2.6		
Anchor category	-	-	3						1						D.5.3 (c)		
Concrete material resistance factor								8.4.2									
Resistance modification factor for tension and shear, concrete fallure modes, Condition B ⁶	R	-	0.75				1.00						D.5.3 (c)				
Factored pullout resistance in 20 MPa uncracked concrete ⁷	N _{pr,uncr}	lb (kN)	675 (3.0)	1640 (7.3)					NA						D.6.3.2		
Factored pullout resistance in	N _{pr,cr}	lb	360	810	515					NA					D.6.3.2		
(1.0) (0.0) (2.0)																	
Factored seismic pullout resistance N lb (290) 810				810	515					NA				- 1	D.6.3.2		
		(kN)	(1.3)	(3.6)	(2.3)												

Design information in this table is taken from ICC-ES ESR-3027, dated December, 2015, tables 2 and 3, and converted for use with CSA A23.3-14 Annex D.

² See figure 1 of this document.

³ For concrete over metal deck applications where the concrete thickness over the top flute is less than h_{min} in this table, see figures 3 and 4 and tables 20 and 21 of this document.

⁴ The KWIK HUS-EZ is considered a brittle steel element as defined by CSA A23.3-14 Aππex D section D.2.

For all design cases, $\psi_{c,N} = 1.0$. The appropriate coefficient for breakout resistance for cracked concrete ($k_{c,o}$) or uncracked concrete ($k_{c,o}$) must be used.

For use with the load combinations of CSA A23.3-14 chapter 8. Condition B applies where supplementary reinforcement in conformance with CSA A23.3-14 section D.5.3 is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the resistance modification factors associated with Condition A may be used.

⁷ For all design cases, y_{c,P} = 1.0. NA (not applicable) denotes that this value does not control for design. See section 4.1.4 of ESR-3027 for additional information.

Table 24 - Hilti KWIK HUS-EZ carbon steel screw anchor factored resistance with concrete/pullout failure in uncracked concrete^{1,2,3,4,5}

				Tensio	on - N _r			Shea	ır - V _r	
Nominal anchor diameter	Effective embed, in. (mm)	Nominal embed. in. (mm)	f' = 20 MPa (2,900psi) lb (kN)	f' = 25 MPa (3,625 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' = 40 MPa (5,800 psi) lb (kN)	f' = 20 MPa (2,900 psi) lb (kN)	f' = 25 MPa (3,625 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' = 40 MP (5,800 psi) lb (kN)
	1.18	1-5/8	685	765	840	970	805	900	985	1,135
1/4	(30)	(41)	(3.0)	(3.4)	(3.7)	(4.3)	(3.6)	(4.0)	(4.4)	(5.1)
1,7-7	1.92	2-1/2	1,645	1,840	2,015	2,325	2,225	2,490	2,725	3,145
	(49)	(64)	(7.3)	(8.2)	(9.0)	(10.3)	(9.9)	(11.1)	(12.1)	(14.0)
	1.11	1-5/8	980	1,095	1,200	1,385	980	1,095	1,200	1,385
	(28)	(41)	(4.4)	(4.9)	(5.3)	(6.2)	(4.4)	(4.9)	(5.3)	(6.2)
3/8	1.86	2-1/2	2,120	2,375	2,600	3,000	2,120	2,375	2,600	3,000
0,0	(47)	(64)	(9.4)	(10.6)	(11.6)	(13.3)	(9.4)	(10.6)	(11.6)	(13.3)
	2.50	3-1/4	3,305	3,695	4,050	4,675	6,615	7,395	8,100	9,355
	(64)	(83)	(14.7)	(16.4)	(18.0)	(20.8)	(29.4)	(32.9)	(36.0)	(41.6)
	1.52	2-1/4	1,570	1,755	1,920	2,215	1,570	1,755	1,920	2,215
	(39)	(57)	(7.0)	(7.8)	(8.5)	(9.9)	(7.0)	(7.8)	(8.5)	(9.9)
1/2	2.16	3	2,975	3,325	3,645	4,205	2,975	3,325	3,645	4,205
'/-	(55)	(76)	(13.2)	(14.8)	(16.2)	(18.7)	(13.2)	(14.8)	(16.2)	(18.7)
j	3.22	4-1/4	5,415	6,055	6,630	7,655	10,825	12,105	13,260	15,310
	(82)	(108)	(24.1)	(26.9)	(29.5)	(34.1)	(48.2)	(53.8)	(59.0)	(68.1)
	2.39	3-1/4	3,460	3,870	4,240	4,895	3,460	3,870	4,240	4,895
5/8	(61)	(83)	(15.4)	(17.2)	(18.9)	(21.8)	(15.4)	(17.2)	(18.9)	(21.8)
3/0	3.88	5	7,160	8,005	8,770	10,125	14,320	16,010	17,540	20,255
	(99)	(127)	(31.9)	(35.6)	(39.0)	(45.0)	(63.7)	(71.2)	(78.0)	(90.1)
	2.92	4	4,675	5,225	5,725	6,610	9,350	10,455	11,450	13,225
241	(74)	(102)	(20.8)	(23.3)	(25.5)	(29.4)	(41.6)	(46.5)	(50.9)	(58.8)
3/4	4.84	6-1/4	9,975	11,155	12,220	14,110	19,955	22,310	24,435	28,220
	(123)	(159)	(44.4)	(49.6)	(54.4)	(62.8)	(88.8)	(99.2)	(108.7)	(125.5)

Table 25 - Hilti KWIK HUS-EZ carbon steel screw anchor factored resistance with concrete/pullout failure in cracked concrete^{1,2,3,4,5}

				Tensi	on - N _r			Shea	ar - V,	
Nominal anchor diameter	Effective embed. in. (mm)	Nominal embed. in. (mm)	f' = 20 MPa (2,900psi) lb (kN)	f' = 25 MPa (3,625 psi) lb (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' = 40 MPa (5,800 psi) lb (kN)	f' = 20 MPa (2,900 psl) lb (kN)	f' = 25 MPa (3,625 psi) Ib (kN)	f' _c = 30 MPa (4,350 psi) lb (kN)	f' = 40 MPa (5,800 psi) lb (kN)
	1.18	1-5/8	350	520	570	660	565	630	690	795
1/4	(30)	(41)	(1.6)	(2.3)	(2.5)	(2.9)	(2.5)	(2.8)	(3.1)	(3.5)
1/-4	1.92	2-1/2	815	915	1,000	1,155	1,560	1,740	1,910	2,205
	(49)	(64)	(3.6)	(4.1)	(4.4)	(5.1)	(6.9)	(7.7)	(8.5)	(9.8)
	1.11	1-5/8	510	570	625	720	685	765	840	970
	(28)	(41)	(2.3)	(2.5)	(2.8)	(3.2)	(3.0)	(3.4)	(3.7)	(4.3)
3/8	1.86	2-1/2	1,485	1,660	1,820	2,100	2,970	3,320	3,640	4,200
0/0	(47)	(64)	(6.6)	(7.4)	(8.1)	(9.3)	(13.2)	(14.8)	(16.2)	(18.7)
	2.50	3-1/4	2,315	2,590	2,835	3,275	2,315	2,590	2,835	3,275
	(64)	(83)	(10.3)	(11.5)	(12.6)	(14.6)	(10.3)	(11.5)	(12.6)	(14.6)
	1.52	2-1/4	1,095	1,225	1,345	1,550	1,095	1,225	1,345	1,550
	(39)	(57)	(4.9)	(5.5)	(6.0)	(6.9)	(4.9)	(5.5)	(6.0)	(6.9)
1/2	2.16	3	1,860	2,080	2,275	2,630	1,860	2,080	2,275	2,630
1/2	(55)	(76)	(8.3)	(9.2)	(10.1)	(11.7)	(8.3)	(9.2)	(10.1)	(11.7)
	3.22	4-1/4	3,385	3,785	4,145	4,785	6,765	7,565	8,290	9,570
_	(82)	(108)	(15.1)	(16.8)	(18.4)	(21.3)	(30.1)	(33.7)	(36.9)	(42.6)
	2.39	3-1/4	2,165	2,420	2,650	3,060	2,165	2,420	2,650	3,060
5/8	(61)	(83)	(9.6)	(10.8)	(11.8)	(13.6)	(9.6)	(10.8)	(11.8)	(13.6)
3/6	3.88	5	4,475	5,005	5,480	6,330	8,950	10,005	10,965	12,660
	(99)	(127)	(19.9)	(22.3)	(24.4)	(28.2)	(39.8)	(44.5)	(48.8)	(56.3)
	2.92	4	2,920	3,265	3,580	4,130	5,845	6,535	7,155	8,265
3/4	(74)	(102)	(13.0)	(14.5)	(15.9)	(18.4)	(26.0)	(29.1)	(31.8)	(36.8)
3/4	4.84	6-1/4	6,235	6,970	7,635	8,820	12,470	13,945	15,275	17,635
	(123)	(159)	(27.7)	(31.0)	(34.0)	(39.2)	(55.5)	(62.0)	(67.9)	(78.4)

See section 3.1.8.6 to convert factored resistance value to ASD value.

Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

Apply spacing, edge distance, and concrete thickness factors in tables 6 to 15 as necessary. Compare to the steel values in table 24.

The lesser of the values is to be used for the design.

Tablular values are for normal-weight concrete only. For lightweight concrete multiply design strength by la as follows: for sand-lightweight, λ_a = 0.68; for all-lightweight, λ_a = 0.60

Tablular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic tension loads, multiply cracked concrete tabular values in tension by the following reduction factors:

1/4-in diameter by 1-5/8-in nominal embedment depth - $\alpha_{seis} = 0.60$

All other sizes - $\alpha_{sol} = 0.75$ No reduction needed for selsmic shear. See section 3.1.8.7 for additional information on seismic applications.

Table 26 - Hilti KWIK HUS-EZ in the soffit of uncracked lightweight concrete over metal deck^{1,2,3,4,5,6,7}

*

			Installation	in lower flute		Installation in upper flute						
		Tensi	on - N _r	Shea	ar - V _r	Tensi	on - N _r	Shea	ar - V,			
Nominal anchor diameter	Nominal embedment in. (mm)	f' = 20 MPa (2,900psi) lb (kN)	f' = 20 MPa (2,900psi) lb (kN)	f' = 20 MPa (2,900psi) Ib (kN)	f' = 20 MPa (2,900psi) Ib (kN)	f' = 20 MPa (2,900psi) lb (kN)	f' = 20 MPa (2,900psi) lb (kN)	f' = 20 MPa (2,900psi) Ib (kN)	f' = 20 MPa (2,900psi) lb (kN)			
	1-5/8	580	710	665 665		715	875	665	665			
1/4	(41)	(2.6)	(3.2)	(3.0)	(3.0)	(3.2)	(3.9)	(3.0)	(3.0)			
1/-	2-1/2	1,200	1,470	1,220	1,220	1,255	1,535	1,805	1,805			
	(64)	(5.3)	(6.5)	(5.4)	(5.4)	(5.6)	(6.8)	(8.0)	(8.0)			
	1-5/8	830	1,020	835	835	950	1,165	2,030	2,030			
	(41)	(3.7)	(4.5)	(3.7)	(3.7)	(4.2)	(5.2)	(9.0)	(9.0)			
3/8	2-1/2	1,430	1,755	835	835	1,865	2,285	3,365	3,365			
3/6	(64)	(6.4)	(7.8)	(3.7)	(3.7)	(8.3)	(10.2)	(15.0)	(15.0)			
	3-1/4	2,505	3,070	1,990	1,990	n/a	n/a	n/a	n/a			
	(83)	(11.1)	(13.7)	(8.9)	(8.9)	ıya	Tiya	iya	ıya 			
	2-1/4	835	1,020	885	885	890	1,090	4,335	4,335			
	(57)	(3.7)	(4.5)	(3.9)	(3.9)	(4.0)	(4.8)	(19.3)	(19.3)			
1/2	3	1,955	2,395	1,615	1,615	n/a	n/a	n/a	n/a			
•/-	(76)	(8.7)	(10.7)	(7.2)	(7.2)	11/4	11/4	ııya	11/4			
	4-1/4	3,425	4,195	1,985	1,985	n/a	n/a	n/a	n/a			
	(108)	(15.2)	(18.7)	(8.8)	(8.8)	1174	11/4	11/4	nya			
	3-1/4	2,670	3,270	1,915	1,915	n/a	n/a	n/a	n/a			
5/8	(83)	(11.9)	(14.5)	(8.5)	(8.5)	Tya .	iya	Пуа	ıya			
5,0	5	6,070	7,430	2,315	2,315	n/a	n/a	n/a	n/a			
	(127)	(27.0)	(33.1)	(10.3)	(10.3)	iya	11/4					
3/4	4	2,670	3,270	2,075	2,075	n/a	n/a	n/a	n/a			
, ,	(102)	(11.9)	(14.5)	(9.2)	(9.2)	.,,,,,		., 4	.,,			

Table 27 - Hilti KWIK HUS-EZ in the soffit of cracked lightweight concrete over metal deck1,2,3,4,5,67,8

.

			Installation	in lower flute			Installation i	n upper flute	
		Tensi	on - N _r	Shea	ar - V _r	Tensi	on - N _r	Shaa	ar - V _r
Nominal anchor diameter	Nominal embedment in. (mm)	f' = 20 MPa (2,900psi) lb (kN)	f' _c = 20 MPa (2,900psi) lb (kN)	f' _c = 20 MPa (2,900psi) lb (kN)	f' _c = 20 MPa (2,900psi) Ib (kN)				
	1-5/8	295	365	365 500 500		365 445		520	520
1/4	(41)	(1.3)	(1.6)	(2.2)	(2.2)	(1.6)	(2.0)	(2.3)	(2.3)
1/4	2-1/2	595	730	1,100	1,100	625	765	1,625	1,625
	(64)	(2.6)	(3.2)	(4.9)	(4.9)	(2.8)	(3.4)	(7.2)	(7.2)
	1-5/8	580	710	500	500	755	930	2,030	2,030
	(41)	(2.6)	(3.2)	(2.2)	(2.2)	(3.4)	(4.1)	(9.0)	(9.0)
3/8	2-1/2	1,015	1,245	500	500	1,325	1,620	2,015	2,015
0,0	(64)	(4.5)	(5.5)	(2.2)	(2.2)	(5.9)	(7.2)	(9.0)	(9.0)
	3-1/4	1,775	2,175	1,195	1,195	n/a	n/a	n/a	n/a
	(83)	(7.9)	(9.7)	(5.3)	(5.3)	Пус	iya		Пуа
	2-1/4	525	640	535	535	630	770	2,600	2,600
	(57)	(2.3)	(2.8)	(2.4)	(2.4)	(2.8)	(3.4)	(11.6)	(11.6)
1/2	3 (76)	1,235 (5.5)	1,510 (6.7)	965 (4.3)	965 (4.3)	n/a	n/a	n/a	n/a
	4-1/4 (108)	2,155 (9.6)	2,640 (11.7)	1,190 (5.3)	1,190 (5.3)	n/a	n/a	n/a	n/a
	3-1/4 (83)	1,680 (7.5)	2,060 (9.2)	1,150 (5.1)	1,150 (5.1)	n/a	n/a	n/a	n/a
5/8	5	3,820 (17.0)	4,680	1,390	1,390	n/a	n/a	n/a	n/a
	(127)	1,680	(20.8) 2,060	(6.2) 1,440	(6.2) 1,440				
3/4	(102)	(7.5)	(9.2)	(6.4)	(6.4)	n/a	n/a	n/a	n/a

- See section 3.1.8.6 to convert design strength value to ASD value.
- Linear interpolation between embedment depths and concrata comprassive strengths is not permitted.
- Tabular valua is for one anchor per flute. Minimum spacing along the length of the flute is 3 x h_{nom} (nominal embedment).
- Tabular valuas ara lightwaight concreta and no additional reduction factor is needed.
- No additional reduction factors for spacing or edge distance need to be applied.
- Comparison of the tabular values to the steel strangth is not necessary. Tabular values control.
- Tabular valuas are for static loads only. Seismic dasign is not permitted for uncracked concrate. For seismic tension loads, multiply cracked concrata tabular values in tension only by $\alpha_{\rm N, asis}=0.75$. See section 3.1.8.7 for additional information on seismic applications.
- For the following anchor sizes, an additional factor for seismic shear must be applied to the cracked concrete tabular values for seismic conditions:
- 1/4-inch diametar $\alpha_{v,seis} = 0.75$ 3/8-inch diamater $\alpha_{v,seis} = 0.60$ 1/2-inch diameter $\alpha_{v,seis} = 0.60$ 5/8-inch diametar $\alpha_{v,seis} = 0.60$ 3/4-inch diameter $\alpha_{v,seis} = 0.70$

Table 28 - Hilti KWIK HUS-EZ carbon steel screw anchor factored resistance ÷ in the top of uncracked concrete over metal deck^{1,2,3,4,5}

			Tensio	on - N,	Shear - V _r				
Nominal	Effective	Nominal	f' = 20 MPa	f' _c = 30 MPa	f' = 20 MPa	f' _c = 30 MPa			
anchor	embed.	embed.	(2,900psi)	(4,350 psi)	(2,900 psi)	(4,350 psi)			
diameter	in. (mm)	in. (mm)	lb (kN)	lb (kN)	lb (kN)	lb (kN)			
3/8	2	2-5/16	980	1,200	980	1,200			
	(51)	(59)	(4.4)	(5.3)	(4.4)	(5.3)			
1/2	1/2 2 (51)		1,570 (7.0)	1,920 (8.5)	1,570 (7.0)	1,920 (8.5)			

Table 29 - Hilti KWIK HUS-EZ carbon steel screw anchor factored resistance * in the top of cracked concrete over metal deck1,2,3,4,5

			Tensio	on - N _r	Shear - V,				
Nominal anchor diameter	Effective embed. in. (mm)	Nominal embed. in. (mm)	f' = 20 MPa (2,900psi) Ib (kN)	f' = 30 MPa (4,350 psi) lb (kN)	f' _c = 20 MPa (2,900 psi) Ib (kN)	f' = 30 MPa (4,350 psi) lb (kN)			
3/8	2	2-5/16	510	625	685	840			
	(51)	(59)	(2.3)	(2.8)	(3.0)	(3.7)			
1/2	2	2-3/8	1,095	1,345	1,095	1,345			
(51)		(60)	(4.9)	(6.0)	(4.9)	(6.0)			

1 See Section 3.1.8.6 to convert design strength value to ASD value.

2 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

3 Apply spacing, edge distance, and concrete thickness factors in tables 20 and 21 as necessary. Compare to the steel values in table 24. The lesser of the values is to be used for the design.

4 Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength by

for sand-lightweight, $\lambda_s = 0.68$; for all-lightweight, $\lambda_s = 0.60$

5 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic tension loads, multiply cracked concrete tabular values in tension by the following reduction factors:

1/4-inch diameter - $\alpha_{N,sels} = 0.60$ 3/8-inch diameter - $\alpha_{N,sels} = 0.75$.

No reduction needed for seismic shear. See section 3.1.8.7 for additional information on seismic applications.

3.3.6.3.3 Allowable Stress Design for masonry

Table 30 - Allowable tension loads for KWIK HUS-EZ installed in grout-filled masonry walls (lb)1,2,3,4,5

				Spacing		Edge distance
Nominal anchor diameter	Embedment in.6	Loads @ c _g and s _{cr}	Critical - s _{cr}	Minimum - S _{min} in. ⁷	Load reduction factor at s _{min} 8	Critical - c _{cr}
1/4	1-5/810	530	4	2	0.70	
1/4	2-1/211	910	4	4	1.00	4
	1-5/811	535	4	2	0.70	
3/8	2-1/2	895		,		4
	3-1/4	1,210	6	4	0.80	
	2-1/4	710	4	2		
1/2	3	1,110			0.60	4
	4-1/4	1,515	8	4		
5.00	3-1/4	1,155				
5/8	5	1,735	10	4	0.60	4
0.44	4	1,680				
3/4	6-1/4	2,035	12	4	0.60	4

Table 31 - Allowable shear loads for KWIK HUS-EZ installed in grout-filled masonry walls (lb)1,2,3,4,5

				Spacing		Edge distance						
Nominal					Load			Load reductio	n factor at c			
anchor diameter	Embedment in.6	Load at c _{cr}	Critical - S _{cr} in. ⁷	Minimum - S _{min} in. ⁷	reduction factor at S _{min} ^B	Critical - c _{cr}	Minimum - c _{min} in. ⁹	perpendicular to edge	parallel to edge			
1/4	1-5/8	675	4	4	1.00	4	4	1.00	1.00			
1/4	2-1/2	840	4	4	1.00	4	4	1.00	1.00			
	1-5/8	1,140			0.94			0.61	1.00			
3/8 2-1/2 3-1/4	2-1/2	1,165	6	4		6	4	0.70	1.00			
	1,190						0.70	1.00				
	2-1/4	1,845	-					0.50	1.00			
1/2	3	2,055	8	4	88.0	8	4	0.45	0.94			
	4-1/4	2,745						0.40	0.89			
5/8	3-1/4	3,040	10	4	0.00			0.36	0.82			
3/0	5	3,485	10	4	0.36	10	4	0.34	0.92			
2/4	4	3,040	10	4	0.00	40		0.36	0.82			
3/4	6-1/4	3,485	10	4	0.36	10	4	0.34	0.92			

¹ All values are for anchors installed in fully grouted masonry with minimum masonry prism strength of 1,500 psi. Concrete masonry units may be lightweight, medium-weight or normal-weight.

4 For combined loading: For 1/4-in. -
$$\frac{T_{applied}}{T_{atowable}} + \frac{V_{applied}}{V_{allowable}} \le 1$$
 For 3/8- through 3/4-in. - $\left(\frac{T_{applied}}{T_{atowable}}\right)^{5/3} + \left(\frac{V_{applied}}{V_{allowable}}\right)^{5/3} \le 1$

² Anchors may not be installed within one inch in any direction of a vertical joint.

³ Linear interpolation of load values between minimum spacing s_{min} and critical spacing s_{cr} and between minimum edge distance c_{min} and critical edge distance c_{cr} is permitted.

⁵ See figure 5 for anchor locations.

⁶ Embedment depth is measured from the outside face of the concrete masonry embedment.

⁷ Critical spacing s_{cr} is the anchor spacing where full load values may be used. The minimum spacing s_{min} is the minimum spacing for which values are available and installation is recommended. Spacing is measured from the center of one anchor to the center of the adjacent anchor.

⁸ Load reduction factors are multiplicative, both spacing and edge distance load reduction factors must be considered. Load values for anchors installed at less than c_{or} or s_{or} must be multiplied by the appropriate load reduction factor based on actual edge distance (c) or spacing (s).

⁹ The critical edge distance c_{or} is the edge distance where full load values may be used. The minimum edge distance c_{or} is the minimum edge distance for which values are available and installation is recommended. For tension, c_{or} equals c_{min}. Edge distance is measured from the center of the anchor to the closest edge.

¹⁰ Load values must be reduced by 21% for Installations within 1-1/4 inches of the bed joint.

¹¹ Load values must be reduced by 13% for installations within 1-1/4 inches of the bed joint.

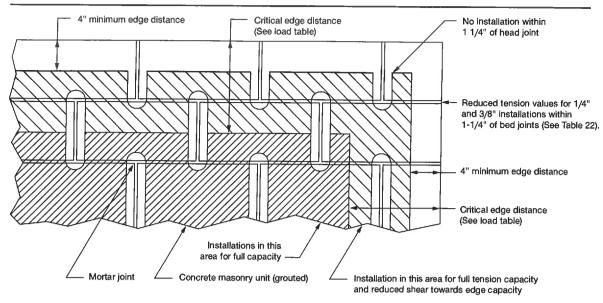
Table 32 – KWIK HUS-EZ allowable loads installed in top-of-grout-filled concrete masonry walls or horizontal members of wall openings^{1,2,3}

						She	ear Ib
	Minimum		'	Minimum		Load d	lirection
Nominal anchor diameter	embedment depth in.	Edge distance ⁴ in.	Critical spacing⁵ in.	end distance ⁶ in.	Tension lb	Parallel to edge of masonry wall	Perpendicular to edge of masonry wall
	1 5/8	1 1/2			205	180	135
1/4	10,0	3 3/4	4	4	205	275	275
1/7	2 1/2	1 1/2	, 4	f " 1	355	345	155
	2 1/2	3 3/4			390	415	330
	1 5/8	1 1/2			245	345	175
3/8	1 5/6	3 3/4	6	_	245	345	345
0/6	3 1/4	1 1/2	ı °	6	465	490	200
	3 1/-+	3 3/4			540	800	625
	2 1/4	1 3/4			390	460	200
1/2	Z 1/4	3 3/4	8	. [610	525	500
1/2	4 1/4	1 3/4		8	540	885	245
	4 1/4	3 3/4			750	1275	550
5/8	5	1 3/4	10	10	975	930	245
5/0	5	3 3/4	10	10	975	2190	630
3/4	6 1/4	3 3/4	12	12	975	2430	630

Table 33 - KWIK HUS-EZ allowable loads installed in end-of-wall or vertical members of wall openings 1.2.3

						She	ar Ib
	Minimum			Minimum		Load d	lirection
Nominal anchor diameter	embedment depth in.	Edge distance⁴ in.	Critical spacing⁵ in.	end distance ⁶ in.	Tension lb	Parallel to edge of masonry wall	Perpendicular to edge of masonry wall
	1 5/8	1 1/2			360	525	205
1/4	1 3/0	3 3/4	4	4	380	595	585
17-7	2 1/2	1 1/2		4	590	610	225
	2 1/2	3 3/4			755	635	585
	1 5/8	1 1/2			355	725	215
3/8	1 0/0	3 3/4	6	6	465	1010	825
0/0	3 1/4	1 1/2	, ,	0	565	875	240
	0 1/4	3 3/4			1020	1195	1050
	2 1/4	1 3/4			500	855	260
1/2	2 1/4	3 3/4	8	8	525	1100	1050
1/2	4 1/4	1 3/4	8	0	650	925	280
	7 1/7	3 3/4			1150	1240	1050
5/8	5	3 3/4	10	10	1605	2215	1050
3/4	6 1/4	3 3/4	12	12	1865	2550	1050

¹ All values are for anchors installed in fully grouted concrete masonry with minimum masonry prism strength of 1,500 psi. Concrete masonry units may be lightweight, medium-weight or normal-weight conforming to ASTM C90. Allowable loads are calculated using safety factor of 5.


² See figure 6 and 7 for allowable anchor installation locations on the top of grout-filled concrete masonry walls. Anchors may not be installed within one inch of a vertical joint. See figure 7 for anchor installation locations in end-of-wall and vertical members of wall openings.

³ Anchors may not be installed within one inch in any direction of a vertical joint.

⁴ For load values at edge distances between listed values linear interpolation is permitted.

⁵ Critical spacing equals minimum spacing.

⁶ Minimum end distance applicable to top-of-wall and end-of-wall and does not apply for wall openings such as windows.

Anchor installation is restricted to non-shaded areas

Figure 5 - Acceptable locations (shaded areas) for Hilti KWIK HUS-EZ anchors in grout-filled concrete masonry

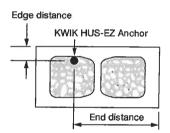


Figure 6 – Edge and end distances for the KWIK HUS-EZ anchor installed in the top of CMU masonry wall construction

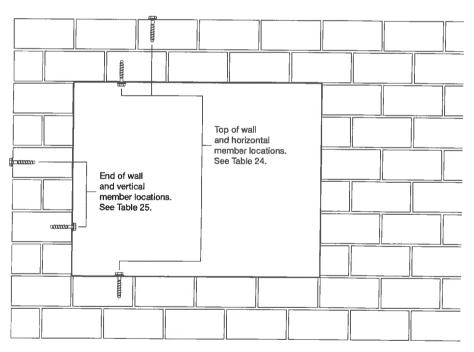
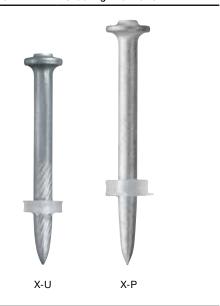



Figure 7 - Anchor locations in end of wall or wall opening applications

3.2.3.1	Product Description
3.2.3.2	Material Specifications
3.2.3.3	Technical Data
3.2.3.4	Ordering Information

Listings/Approvals

ICC-ES (International Code Council)

COLA (City of Los Angeles)

X-U: RR 25675 (X-U Fastener

ESR-2269

only.)

3.2.3 X-P PREMIUM CONCRETE FASTENERS X-U UNIVERSAL KNURLED SHANK FASTENERS

3.2.3.1 Product Description

The Hilti X-P Premium concrete fastener is a hardened fastener with 0.157" shank, optimized for performance in concrete applications, including high strength concrete.

The Hilti X-U universal knurled shank fastener is also a 0.157" shank fastener, designed to cover a wide range of application conditions in steel and concrete. With a fully knurled shank, the X-U fastener is particularly well-suited for steel applications.

To help ensure reliable fastenings, the X-P and X-U fasteners have matched tolerance to all Hilti powder-actuated tools using 8 mm fastener guides and drive pistons through an 8 mm nail head diameter and an 8 mm plastic guidance washer set near the nail tip. The X-U program also includes fasteners with pre-mounted steel washers of 15 mm or 36 mm.

Product Features: X-P Fasteners

- · Conical point, optimized for penetration in standard and tough concretes
- 0.157" shank for optimal tension and shear loads and stick rate
- Comes in 4 lengths, optimized for fastening of sheet metal (up to 16 ga.) to concrete
- Available in single or collated configurations for optimal productivity

Product Features: X-U Fasteners

- Unique knurling design offering higher pullout strength and anchorage in steel
- A 0.157" shank diameter for high performance in both tension and shear applications
- Full range of fasteners in single or collated configurations to maximize productivity
- Recognized for horizontal wood deck diaphragms subjected to wind or seismic forces (Reference ICC-ES ESR-2269)

3.2.3.2 Material Specifications

Fastener Designation	Fastener Material	Fastener Plating	Fastener Hardness				
X-U	Carbon Steel	5 μm Zinc¹	57.5 HRC				
X-P	Carbon Steel	5 um Zinc¹	59 HRC				

1 ASTM B633, SC 1, Type III.

3.2.3.3 Technical Data

Ultimate Loads in Normal Weight concrete^{1, 2}

						Concrete compressive Strength																								
Fastener	Sha Diam		Minir Embed			200	0 psi			400	0 psi			600	0 psi		8000 psi													
	in. (mm)	in. (r	mm)	Tension Shear Ib (kN) Ib (kN)			Tension Shear			Tension Ib (kN)		Shear Ib (kN)		Tension Ib (kN)		Shear Ib (kN)													
			3/4	(19)	570	(2.5)	840	(3.7)	705	(3.1)	765	(3.4)	790	(3.5) 1020		(3.5)	1020 (4.5)		1020 (4.5		1020 (4.5)		1020 (4.5)		1020 (4.5			=	-	
X-U		(4 0)	1	(25)	855	(3.8)	1060	(4.7)	995	(4.4)	1380	(6.1)	1135	(5.1)	1630	(7.3)				-										
Universal Fastener	0.157	(4.0)	1-1/4	(32)	1225	(5.5)	1865	(8.3)	1500	(6.7)	2020	(9.0)	1300	(5.8)	2325	(10.3)			-											
			1-1/2	(38)	1765	(7.9)	2480	(11.0)	1965	(8.7)	2250	(10.0)				-			-	-										
V D			3/4	(19)	535	(2.4)	980	(4.4)	800	(3.6)	1430	(6.4)	735	(3.3)	1575	(7.0)	875	(3.9)	1475	(6.6)										
X-P		(4 0)	1	(25)	880	(3.9)	1395	(6.2)	1345	(6.0)	1710	(7.6)	1320	(5.9)	2040	(9.1)	1400	(6.2)	1820	(8.1)										
Premium Concrete	0.157	57 (4.0)	1-1/4	(32)	1535	(6.8)	2060	(9.2)	1865	(8.3)	2210	(9.8)	1650	(7.3)	2350	(10.5)														
Fastener	Fastener		1-1/2	(38)	2005	(8.9)	2280	(10.1)		-		-				-														

Allowable Loads in Normal Weight concrete^{1, 2}

											Concret	e compi	essive	Strength	ו					
Fastener	Sha Dian	ank neter	Minir Embed			2000) psi			4000) psi			600	0 psi		8000 psi			
	in. (mm)	in. (r	mm)	Tension Ib (kN)			Shear Ib (kN)		Tension Ib (kN)		Shear Ib (kN)		sion kN)	Shear Ib (kN)		Tension Ib (kN)		Shear Ib (kN)	
			3/4	(19)	100	(0.4)	125	(0.6)	100	(0.4)	125	(0.6)	105	(0.5)	205	(0.9)		-		-
X-U			1	(25)	165	(0.7)	190	(0.8)	170	(0.8)	225	(1.0)	110³	(0.5)	280³	(1.2)		-		-
Universal Fastener	0.157	(4.0)	1-1/4	(32)	240	(1.1)	310	(1.4)	280	(1.2)	310	(1.4)	180	(0.8)	425	(1.9)		-		
			1-1/2	(38)	275	(1.2)	420	(1.9)	325	(1.4)	420	(1.9)		-	,	-		-	,	-
			3/4	(19)	100	(0.4)	155	(0.7)	100	(0.4)	175	(8.0)	105	(0.5)	205	(0.9)	135	(0.6)	205	(0.9)
X-P		/4.0\	1	(25)	165	(0.7)	220	(1.0)	180	(0.8)	225	(1.0)	150	(0.7)	300	(1.3)	150	(0.7)	215	(1.0)
Premium Concrete	0.157	(4.0)	1-1/4	(32)	240	(1.1)	310	(1.4)	280	(1.2)	310	(1.4)	180	(0.8)	425	(1.9)		-		
Fastener			1-1/2	(38)	310	(1.4)	420	(1.9)		-		-		-		-		-		-

¹ The tabulated load values are for the low-velocity fasteners only based on testing in accordance with ICC-ES AC 70 and ASTM E1190. Allowable loads are calculated based on a safety factor of at least 5. Some conditions like high wind loads, shock or fatigue may require a different safety factor. Wood or steel members connected to the substrate must be investigated in accordance with accepted design criteria.

Ultimate and Allowable Loads in Normal Weight concrete using DX Kwik^{1, 2,3}

								Concret	e comp	ressive	Strength	1	
Fastener	Sha Dian	ank neter	Minir Embed		Load Type	4000 psi				600	0 psi		
	in. (mm)	in. (ı	mm)		Ten:	sion kN)	She Ib (ear kN)		sion (kN)		ear kN)
X-U 47 P8 with DX Kwik	0.157	(4.0)	1 1/0	(20)	Ultimate	1973	(8.8)	2235	(9.9)	2101	(9.3)	2859	(12.7)
WITH DX KWIK	0.157	(4.0)	1-1/2	(38)	Allowable	395	(1.8)	405	(1.8)	360	(1.6)	570	(2.5)

¹ The tabulated ultimate load values are for the low-velocity fasteners only based on testing in accordance with ICC-ES AC 70 and ASTM E1190. Allowable loads are calculated based on a safety factor of at least 5. Some conditions like high wind loads, shock or fatigue may require a different safety factor. Wood or steel members connected to the substrate must be investigated in accordance with accepted design criteria.

² Multiple fasteners are recommended for any attachment.

³ This allowable load value for the X-U fastener also applies to normal weight hollow core concrete slabs with f'c of 6600 psi and minimum face shell thickness of 1-3/8 in.

² Multiple fasteners are recommended for any attachment
3 X-U Fastener is installed using the DX Kwik drilled pilot hole installation procedure shown in section 3.2.1.1.10 of the North American Product Technical Guide, Volume 1, Edition 2015.

Ultimate Loads in Structural 3000 psi Lightweight concrete^{1, 4}

										Fastener Location			n							
	01											Instal	led throu	ugh Met	al Deck	into Co	ncrete			
Fastener	Dian	ank neter	Minir Embed	dment	Inst	alled in	to Conc	rete	3 i	inch dee	p Comp	osite F	loor Dec	k²	1-1/	2 inch d	eep Co	mposite	Floor D	eck ³
	in. (mm)	in. (r	nm)	Ten	sion	Sh	ear		Tension	lb (kN)		Sh	ear		Tensior	ı lb (kN)		Sh	ear
					lb (kN)	lb (kN)	Uppe	r Flute	Lower	Flute	lb (kN)		Uppe	r Flute	Lowe	r Flute	lb	(kN)
			3/4	(19)	627	(2.8)	747	(3.3)	649	(2.9)	483	(2.1)	1235	(5.5)	562	(2.5)	777	(3.5)	1862	(8.3)
X-U	0.457	(4.0)	1	(25)	1037	(4.6)	1387	(6.2)	1083	(4.8)	774	(3.4)	1645	(7.3)	774	(3.4)	878	(3.9)	2079	(9.3)
Universal Fastener	0.157	(4.0)	1-1/4	(32)	1581	(7.0)	2173	(9.7)	1464	(6.5)	848	(3.8)	1885	(8.4)		-		-		-
			1-1/2	(38)	2116	(9.4)	2524	(11.2)	2010	(8.9)	1292	(5.7)	2155	(9.6)		-		-		-
X-P			3/4	(19)	785	(3.5)	1005	(4.5)	738	(3.3)	525	(2.3)	1530	(6.8)	705	(3.1)	840	(3.7)	1680⁵	(74.8)
	0.457	(4.0)	1	(25)	1245	(5.5)	1625	(7.2)	1120	(5.0)	840	(3.7)	1710	(7.6)	1310	(4.8)	1190	(5.3)	1935⁵	(86.1)
Premium	0.157	(4.0)	1-1/4	(32)	1720	(7.7)	2240	(10.0)	1985	(8.8)	1295	(5.8)	2025	(9.0)		•	1430	(6.4)	2675⁵	(11.9)
Fastener			1-1/2	(38)	2260	(10.1)	2465	(11.0)	2335	(10.4)	2015	(9.0)	1835	(8.2)		-		-		-

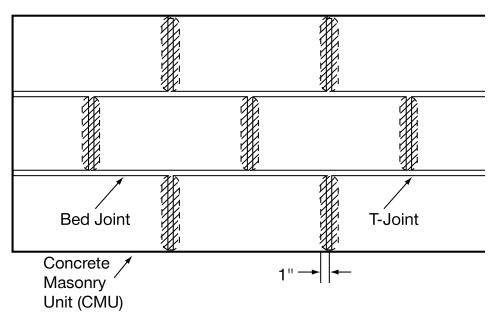
Allowable Loads in Structural 3000 psi Lightweight concrete^{1,4}

											F	astener	Locatio	n						
	Ch	ا ما	Minir		last	talled int	ha Cana	unto.				Install	ed thro	ugh Met	al Deck	into Co	ncrete			
Fastener	Dian	ank neter	Embed	dment	ins	ialled ini	io Cond	rete	3	inch dee	p Com	posite FI	oor Ded	ck²	1-1/2 inch		еер Со	mposite	Floor D	eck ³
	in. ((mm)	in. (r	mm)	Ten	sion	Sh	ear		Tension	lb (kN)		Sh	ear		Tension	ı lb (kN))	Sh	ear
					lb (kN)	lb	(kN)	Uppe	r Flute	Lowe	r Flute	lb ((kN)	Uppe	r Flute	Lowe	r Flute	lb	(kN)
			3/4	(19)	125	(0.6)	115	(0.5)	130	(0.6)	95	(0.4)	245	(1.1)	95	(0.4)	95	(0.4)	370	(1.6)
X-U	0.457	(4.0)	1	(25)	205	(0.9)	260	(1.2)	215	(1.0)	155	(0.7)	330	(1.5)	125	(0.6)	125	(0.6)	415	(1.8)
Universal Fastener	0.157	(4.0)	1-1/4	(32)	315	(1.4)	435	(1.9)	295	(1.3)	200	(0.9)	375	(1.7)		-		-		-
			1-1/2	(38)	425	(1.9)	475	(2.1)	400	(1.8)	260	(1.2)	430	(1.9)		-		-		-
V D			3/4	(19)	155	(0.7)	165	(0.7)	130	(0.6)	105	(0.5)	285	(1.3)	140	(0.6)	130	(0.6)	335⁵	(14.9)
X-P	0.457	(4.0)	1	(25)	225	(1.0)	300	(1.3)	215	(1.0)	165	(0.7)	340	(1.5)	215	(1.0)	215	(1.0)	385⁵	(17.2)
Premium	0.157	(4.0)	1-1/4	(32)	325	(1.4)	445	(2.0)	295	(1.3)	230	(1.0)	375	(1.7)		-	270	(1.2)	465⁵	(2.1)
Fastener			1-1/2	(38)	425	(1.9)	480	(2.1)	400	(1.8)	330	(1.5)	365	(1.6)		-		-		-

¹ The tabulated load values are for the low-velocity fasteners only based on testing in accordance with ICC-ES AC 70 and ASTM E1190. Allowable loads are calculated based on a safety factor of at least 5. Some conditions like high wind loads, shock or fatigue may require a different safety factor. Wood or steel members connected to the substrate must be investigated in accordance with accepted design criteria.

² The steel deck profile for the 3" deep composite floor deck has a minimum thickness of 20 gauge (0.0358") and a minimum Fy = 33 ksi. Lower and upper flute width must be a minimum of 3-7/8". Figure 1 in Section 3.2.1.1.6 shows the nominal flute dimensions, fastener locations and load orientations for the deck profile. Structural lightweight concrete fill above top of steel deck must be minimum 3-1/4".

³ The steel deck profile for the 1-1/2" deep composite floor deck has a minimum thickness of 20 gauge (0.0358") and a minimum Fy = 33 ksi. Lower flute and upper flute widths must be a minimum of 1-3/4" and 3-1/2", respectively. This deck may also be inverted as shown in Figure 3 in Section 3.2.1.1.6. Figures 2 and 3 in Section 3.2.1.1.6 show the nominal flute dimensions, fastener locations and load orientations for the deck profile. Structural lightweight concrete fill above top of steel deck must be minimum 2-1/2".


⁴ Multiple fasteners are recommended for any attachment.

⁵ For installation in the lower flute only.

Ultimate and Allowable Loads in Concrete Masonry Units 1, 2, 3, 4, 5, 10

									Hollov	v CMU					
Fastener	Shank Diameter	Minimum Embedment	Load Type			Face	Shell ⁶					Morta	r Joint ⁶		
	in. (mm)	in. (mm)			Tension Ib (kN)			Shear Ib (kN)			Tension Ib (kN)			Shear ⁷ Ib (kN)	
X-U	0.157 (4.0)	4 (05)	Ultimate	449		(2.0)	524		(2.3)	244		(1.1)	483		(2.1)
X-U	0.157 (4.0)	1 (25)	Allowable	70		(.3)	85		(.4)	25		(.1)	70		(.3)
									Grout-Fil	led CML	J				
Fastener	Shank Diameter	Minimum Embedment	Load Type		Face	Shell ⁶			Morta	r Joint ⁶		Т	op of Gro	outed Cel	I ⁸
	in. (mm)	in. (mm)		Tens		She Ib (ear kN)		sion (kN)		ear ⁷ (kN)		ision (kN)		ear ⁹ kN)
V II	0.157 (4.0)	4 (05)	Ultimate	1124	(5.0)	1093	(4.9)	920	(4.1)	993	(4.4)	935	(4.2)	1194	(5.3)
X-U	0.157 (4.0)	1 (25)	Allowable	225	(1.0)	220	(1.0)	150	(.7)	190	(.8)	165	(.7)	240	(1.1)

- 1 The tabulated allowable & ultimate load values are for the low-velocity fasteners only based on testing in accordance with ICC-ES AC 70 and ASTM E1190. Allowable loads are calculated based on a safety factor of at least 5. Some conditions like high wind loads, shock or fatigue may require a different safety factor.
- 2 The tabulated allowable & ultimate load values are for low-velocity fasteners installed in normal weight or lightweight concrete masonry units conforming to ASTM C90.
- 3 The tabulated allowable & ultimate load values are for low-velocity fasteners installed in concrete masonry units with mortar conforming to ASTM C270, Type S.
- 4 The tabulated allowable & ultimate load values are for low-velocity fasteners installed in concrete masonry units with grout conforming to ASTM C476.
- 5 The tabulated allowable & ultimate load values are for one low-velocity fastener installed in an individual masonry unit cell and at least 4" from the edge of the wall.
- 6 Fastener can be located anywhere on the face shell or mortar joints as shown in the figure below.
- 7 Shear load direction can be horizontal or vertical (Bed Joint or T-Joint) along the CMU wall plane.
- 8 Fastener located in center of grouted cell installed vertically.
- 9 Shear load can be in any direction in top of grouted cell application.
- 10 Multiple fasteners are recommended for any attachment.

Acceptable Locations (NON-SHADED AREAS) for X-U Universal Knurled Shank Fasteners in CMU Walls

Ultimate and Allowable Loads in Minimum ASTM A36 (F_v ≥ 36 ksi; F_u ≥ 58 ksi) Steel ^{1,2,4,5}

		,						Steel Thic	kness in.					
Fastener	Shank Diameter	Load Type			3/	/16					1,	/4		
	in. (mm)	,,		Tension Ib (kN)			Shear Ib (kN)			Tension Ib (kN)			Shear Ib (kN)	
VII	0.157 (4.0)	Ultimate	2872		(12.8)	3939		(17.5)	4170	1	(18.6)	3886		(17.3)
X-U	0.157 (4.0)	Allowable	500 ⁶		(2.4)	720		(3.2)	775 ⁶		(3.4)	720		(3.2)
								Steel Thic	kness in.					
Fastener	Shank Diameter	Load Type		3,	/8			1/	/2			≥3,	/4 ³	
	in. (mm)		Ten:	sion kN)		near (kN)		nsion (kN)	Sh Ib (ear kN)		sion kN)	Sho Ib (
VII	0.457 (4.0)	Ultimate	5688	(25.3)	4426	(19.7)	4690	(20.9)	3761	(16.7)	1899	(8.5)	2046	(9.1)
X-U	0.157 (4.0)	Allowable	935	(4.2)	720	(3.2)	900	(4.0)	720	(3.2)	350	(1.6)	375	(1.7)

¹ The tabulated ultimate load values are for the low-velocity fasteners only based on testing in accordance with ICC-ES AC 70 and ASTM E1190. Allowable loads are calculated based on a safety factor of at least 5. Some conditions like high wind loads, shock or fatigue may require a different safety factor.

Allowable Tensile Pullover and Shear Bearing Load Capacities for Steel Framing with X-P and X-U Powder-Actuated Fasteners^{1,2,3,4}

									Sh	neet Stee	l Thick	ness						
Fastener	Fastener	Head Diameter		14 (ga.			16	ga.			18 (ga.			20	ga.	
Description		in. (mm)	Tens Ib (She Ib (I		Ten:			Shear (kN)		sion (kN)		ear (kN)		nsion (kN)		near (kN)
0.157" shank with or without plastic washers or MX collation	X-U X-P	0.322 (8.2)	825	(3.67)	1,085	(4.83)	685	(3.05)	720	(3.20	490	(2.18)	525	(2.34)	360	(1.60)	445	(1.98)
									Sh	neet Stee	l Thick	ness						
Fastener	Fastener	Head Diameter			22 ga	•				24	ga.				25	5/26 ga.		
Description		in. (mm)		ension b (kN)			ear kN)		Tens			Shear b (kN)		Ten:	sion kN)		Shea Ib (ki	
0.157" shank with or without plastic washers or MX collation	X-U X-P	0.322 (8.2)	300	(1.3	33)	330	(1.47)	20)5	(0.91)	255	(1.1	3)	120	(0.53	3) 14	! 5	(0.64)

¹ Allowable load values are based on a safety factor of 3.0 in accordance with the AISI S100.

² Low-velocity fasteners shall be driven to where the point of the fastener penetrates the steel base material, except as noted.

³ Tabulated ultimate load values provided for ≥ 3/4" steel are based upon minimum point penetration of 1/2". If 1/2" point penetration is not achieved, but a point penetration of at least 3/8" is obtained, the tabulated tension value should be reduced by 20% and the tabulated shear value should be reduced by 8%.

⁴ Multiple fasteners are recommended for any attachment

⁵ When used for resisting seismic forces, allowable loads are valid as per ICC-ES AC70, Annex A

⁶ For fastening of cold-formed sheet steel, up to 16 gauge, for static loads only, when designed in accordance with AISI S100-12 (Section E 5.2): The tabulated allowable load may be increased by a factor of 1.25, and the design strength may be taken as the tabulated allowable load multiplied by a factor of 2.0.

² Allowable pullover capacities of sheet steel should be compared to allowable fastener tensile load capacities in concrete, steel, or masonry to determine controlling resistance load.

³ Allowable shear load bearing capacities of sheet steel should be compared to allowable fastener shear capacities in concrete, steel or masonry to determine controlling resistance load.

⁴ Data is based on the following minimum sheet steel properties, $F_v = 33$ ksi, $F_u = 45$ ksi (ASTM A653 material).

3.2.3.4 PERIMETER WALL APPLICATION FASTENERS

3.2.3.4.1 Application Description

Perimeter wall applications as part of curtain walls and bypass balloon framing are common in steel and metal framed structures. Cold-formed steel framing and track encompass the outside perimeter of the building. Steel track is fastened directly or with other cold-formed steel components to steel framing members or to concrete slab edges. Insulation and/ or cladding materials are then fastened to the steel track.

Product Features: X-P Fasteners

- Conical point, optimized for penetration in standard and tough concretes.
- 0.157" shank for optimal tension and shear performance
- · Comes in 4 lengths, optimized for fastening of sheet steel (up to 16 ga) to concrete
- Available in single or collated configurations for optimal productivity

Product Features: X-U Fasteners

- Unique knurling design offering higher pullout strength and anchorage in steel
- A 0.157" shank diameter for high performance in both tension and shear applications
- For both X-U and X-P fasteners, full range of fasteners in single or collated configurations to maximize productivity

3.2.3.4.2 Technical Data

Perimeter Wall Track Applications

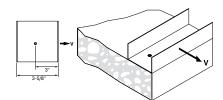


Figure 1: 3-5/8" Track - 1 Fastener

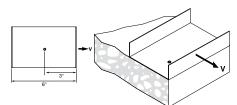
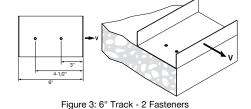



Figure 2: 6" Track - 1 Fastener

3.2.3.4.1 Application Description

3.2.3.4.2 Technical Data

Listings/Approvals

ICC-ES (International Code Council)

COLA (City of Los Angeles) ESR-2269 (X-P, X-U and X-U 15) ESR-1663 (DS, EDS)

RR 25675 (X-U and X-U 15) RR 25646 (DS, EDS)

Ultimate and Allowable Shear Loads for Attachment of Perimeter Track to 4000 psi Normal Weight Concrete^{1, 2, 3, 4, 5, 6}

Fastener Description	Shank Diameter in. (mm)	Le	tener ngth (mm)	Track Width in. ⁷	Number of Fasteners		Shear load (kN)	Allowable :	
X-U ⁸				3-5/8	1	1380	(6.1)	225	(1.0)
Universal Knurled		1	(27)	6	1	1380	(6.1)	225	(1.0)
Shank Fasteners	0.157 (4.0)			0	2 3045 (13.6)		450	(2.0)	
and X-P ⁸	0.157 (4.0)			3-5/8 1 2020 (9.0)		275	(1.2)		
Premium Concrete		1-1/4	(32)	6	1	2020	(9.0)	275	(1.2)
Fastener				6	2	2760	(12.3)	550	(2.4)
				3-5/8	1	1200	(5.3)	240	(1.1)
		1	(27)	6	1	1200	(5.3)	240	(1.1)
DS ⁹	0 177 (4 5)			6 2 2750 (12.2)		480	(2.1)		
Heavy Duty Fasteners	0.177 (4.5)			3-5/8	1	2125	(9.5)	350	(1.6)
		1-1/4	(32)	6	1	2125	(9.5)	350	(1.6)
				6 2		-	-	-	-

¹ The tabulated ultimate loads were developed from testing the low-velocity fasteners with 16 gauge (Fy ≥ 33 ksi) steel track. A safety factor greater than or equal to 5.0 was used to determine allowable loads. Steel track members not meeting the specification noted must be investigated in accordance with accepted design criteria 2 Allowable values are for fasteners installed in concrete having the designated compressive strength at the time of installation.

³ Spacing and edge distance constraints are as noted in Figure 1-3 on previous page.

⁴ Allowable shear load values are for loads applied perpendicular to the edge of the concrete.

⁵ Multiple fasteners are recommended for any attachment.
6 Minimum edge distance of 3" cannot be decreased. Closer edge distances can result in edge breakout failure of the base material during installation. As a result, fasteners are offset from the center line of the track.

⁷ SSMA track designation for 3-5/8" track is 362T 150-54 and for 6" track is 600T 150-54.

⁸ For additional technical data and materials specifications for X-U and X-P fasteners, see Section 3.2.3.2 and 3.2.3.3 of this Technical Guide 9 For additional technical data and materials specifications for DS fasteners, see Hilti North American Product Technical Guide 2015, Volume 1, Section 3.2.2.3

Ultimate and Allowable Shear Loads for Attachment of Perimeter Track to 3000 psi Light Weight Concrete 1,2,3,4,5,6

Fastener Description	Shan Diame in. (mi	ter	Fast Len in. (ı	gth	Track Width in. ⁷	Number of Fasteners		Shear load (kN)	Allowable Ib (Shear load kN)
					3-5/8	1	1290	(5.7)	260	(1.2)
			1	(27)	6	1	1290	(5.7)	260	(1.2)
X-U ⁸ Universal					б	2	2585	(11.5)	520	(2.3)
Knurled Shank					3-5/8	1	2173	(9.7)	350	(1.6)
Fasteners and	0.157	(4.0)	1-1/4	(32)		1	2173	(9.7)	350	(1.6)
X-P ⁸ Premium					6	2	2885	(12.8)	575	(2.6)
Concrete Fastener					3-5/8	1	2524	(11.2)	295	(1.3)
			1-1/2	(37)	6	1	2524	(11.2)	295	(1.3)
					0	2	3020	(13.4)	605	(2.7)
					3-5/8	1	1020	(4.5)	205	(0.9)
			1	(27)	6	1	1020	(4.5)	205	(0.9)
					0	2	2995	(13.3)	600	(2.7)
DS ⁹					3-5/8	1	1120	(5.0)	225	(1.0)
Heavy Duty Fasteners	0.177	(4.5)	1-1/4	(32)	6	1	1120	(5.0)	225	(1.0)
rasteriers					0	2	2965	(13.2)	595	(2.6)
					3-5/8	1	1075	(4.8)	215	(1.0)
			1-1/2	(37)	6	1	1075	(4.8)	215	(1.0)
					U	2	2955	(13.1)	590	(2.6)

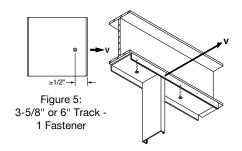
¹ The tabulated ultimate loads were developed from testing the low-velocity fasteners with 16 gauge (Fy ≥ 33 ksi) steel track. A safety factor greater than or equal to 5.0 was used to determine allowable loads. Steel track members not meeting the specification noted must be investigated in accordance with accepted design criteria

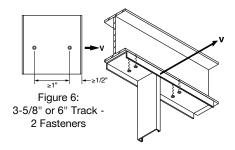
² Allowable values are for fasteners installed in concrete having the designated compressive strength at the time of installation.

³ Spacing and edge distance constraints are as noted in Figure 1-3 on page 7.

⁴ Allowable shear load values are for loads applied perpendicular to the edge of the concrete. 5 Multiple fasteners are recommended for any attachment.

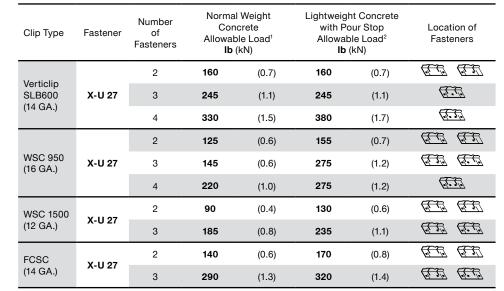
⁶ Minimum edge distance of 3" cannot be decreased. Closer edge distances can result in edge breakout failure of the base material during installation. As a result, fasteners are offset from the center line of the track.
7 SSMA track designation for 3-5/8" track is 362T 150-54 and for 6" track is 600T 150-54.
8 For additional technical data and material specifications for X-U and X-P fasteners, see Section 3.2.3.2 and 3.2.3.3 of this Technical Guide Supplement


⁹ For additional technical data and material specifications for DS fasteners, see Hillt North American Product Technical Guide 2015, Volume 1 Section 3.2.2.3



Allowable Shear Loads for Attachment of Perimeter Track to Minimum ASTM A36 (F_u ≥ 36 ksi; F_u ≥ 58 ksi) Steel, lb (kN)¹.2.3.4

Fastener		Sha	ank	Number					Steel Thic	kness (in.)				
Description	Fastener	Diam in. (ı		of Fasteners	3/ lb (1/ Ib (3/ Ib (1/ Ib (≥3 Ib (I	,
	V II	0.457	(4.0)	1	720	(3.2)	720	(3.2)	720	(3.2)	720	(3.2)	375⁵	(1.7)
Universal Knurled	X-U	0.157	(4.0)	2	1440	(6.4)	1440	(6.4)	1440	(6.4)	1440	(6.4)	750⁵	(3.3)
Shank Fasteners	X-U 15	0.145	(0.7)	1	395	(1.8)	395	(1.8)	450	(2.0)	500 ⁶	(2.2)	400 ⁶	(1.8)
	X-U 15	0.145	(3.7)	2	800	(3.6)	790	(3.5)	900	(4.0)	1000 ⁶	(4.5)	800 ⁶	(3.6)
Heavy Duty	EDS	0.177	(4 E)	1	615	(2.7)	870	(3.9)	870	(3.9)	960	(4.3)	655 ⁷	(2.9)
Fasteners	EDS	0.177	(4.5)	2	1230	(5.5)	1740	(7.7)	1740	(7.7)	1920	(8.5)	1310 ⁷	(5.8)


- 1 The tabulated allowable load values are for the low-velocity fasteners only, using a safety factor that is greater than or equal to 5.0, calculated in accordance with ICC-ES AC70. Steel
- members connected to the substrate must be investigated in accordance with accepted design criteria. 2 Low-velocity fasteners shall be driven to where the point of the fastener penetrates the steel base material, except as noted.
- 3 Multiple fasteners are recommended for increased reliability.
- 4 The minimum edge distance for fastening into steel is 1/2". Minimum spacing for fastening into steel without reduction in performance is 1".
- 5 Noted tabulated allowable load values are based upon minimum point penetration of 1/2". If 1/2" point penetration is not achieved, but a point penetration of at least 3/8" is obtained, the tabulated shear load should be reduced by 8 percent.
- 6 Noted tabulated allowable load values are based upon minimum point penetration of 15/32".
- 7 Noted tabulated allowable load values are based upon a minimum point penetration of 1/2".

Deflection Slip Clip Applications

Allowable Loads for Attachment of Cold-Formed Steel Deflection Slip Clips with X-U Universal Powder-Actuated Fasteners^{3,4,5,6,7,8}

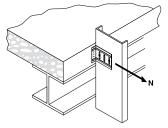


Figure 7: Normal Weight Concrete

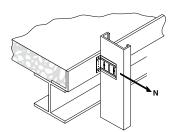
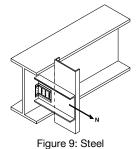


Figure 8: Lightweight Concrete with Pour Stop

- 1 Allowable load based on a safety factor of 5.0 in direction shown in Figure 7 above for attachment of deflection slip clip to 4000 psi Normal Weight Concrete Slab.
- 2 Allowable load based on a safety factor of 5.0 in direction shown in Figure 8 above for attachment of deflection slip clip to 3000 psi Lightweight Concrete Slab with 12 GA. sheet steel pour stop with minimum yield strength Fy = 33 ksi.

 3 Testing based on deflection slip clips obtained in February 2007. Subsequent changes by the manufacturer to the deflection slip clip design may affect load values.
- Allowable load values are for fasteners installed in concrete having the designated compressive strength at the time of installation.

 Allowable load values are based off of the fixtures tested. Other members connected to the deflection slip clips must be
- investigated in accordance with accepted design criteria.


 Spacing of fasteners depends on the design of each deflection slip clip. Fasteners should be installed through the preasigned locations in the deflection slip clip.

 For edge distance and base material thickness requirements, reference Section 3.2.1.1.4.

- 8 Allowable values are for loads applied perpendicular to the edge of the concrete. 9 Multiple fasteners are recommended for any attachment.

Allowable Loads for Attachment of Cold-Formed Steel Deflection Slip Clips with X-U Universal Powder-Actuated Fasteners to Minimum ASTM A36 ($F_y \ge 36$ ksi; $F_u \ge 58$ ksi) Steel^{1,2,3,4,5,6,7,8}

Clip Type	Fastener	Number of Fasteners	Allowab Ib (Location of Fasteners
	X-U 16	2	740	(3.3)	
Verticlip SLB600 (14 GA.)	X-U 19 EDS 19	3	1490	(6.6)	
	EDS 22	4	2115	(9.4)	
	X-U 16	2	510	(2.3)	
WSC 950 (16 GA.)	X-U 19 EDS 19	3	610	(2.7)	
	EDS 22	4	870	(3.9)	- T. T.
	X-U 16	2	970	(4.3)	
WSC 1500 (12 GA.)	X-U 19 EDS 19	3	1105	(4.9)	
	EDS 22	4	1300	(5.8)	- T. J.
	X-U 16	2	715	(3.2)	
FCSC (14 GA.)	X-U 19 EDS 19	3	940	(4.2)	
	EDS 22	4	1055	(4.7)	

3.2.3.5 ORDERING INFORMATION

Fastener Description	Shank Length in. (mm)	Shank Ø in. (mm)	Washer Ø	Packaging Qty
X-P 22	7/8 (22)	0.157 (4.0)	Plastic 8 mm or collated	100 pcs/box
X-P 27	1 (27)	0.157 (4.0)	Plastic 8 mm or collated	100 pcs/box
X-P 34	1 5/16 (34)	0.157 (4.0)	Plastic 8 mm or collated	100 pcs/box
X-P 40	1 9/16 (40)	0.157 (4.0)	Plastic 8 mm or collated	100 pcs/box
X-U 16	5/8 (16)	0.157 (4.0)	Plastic 8 mm or collated	100 pcs / box
X-U 19	3/4 (19)	0.157 (4.0)	Plastic 8 mm or collated	100 pcs / box
X-U 22	7/8 (22)	0.157 (4.0)	Plastic 8 mm or collated	100 pcs / box
X-U 27	1 (27)	0.157 (4.0)	Plastic 8 mm or collated	100 pcs / box
X-U 32	1-1/4 (32)	0.157 (4.0)	Plastic 8 mm or collated	100 pcs / box
X-U 37	1-1/2 (37)	0.157 (4.0)	Plastic 8 mm or collated	100 pcs / box
X-U 42	1-5/8 (42)	0.157 (4.0)	Plastic 8 mm or collated	100 pcs / box
X-U 47	1-7/8 (47)	0.157 (4.0)	Plastic 8 mm or collated	100 pcs / box
X-U 52	2 (52)	0.157 (4.0)	Plastic 8 mm or collated	100 pcs / box
X-U 57	2-1/4 (57)	0.157 (4.0)	Plastic 8 mm or collated	100 pcs / box
X-U 62	2-1/2 (62)	0.157 (4.0)	Plastic 8 mm or collated	100 pcs / box
X-U 72	2-7/8 (72)	0.157 (4.0)	Plastic 8 mm or collated	100 pcs / box
X-U 22 P8 S15	7/8 (22)	0.157 (4.0)	Plastic 8 mm & Steel 15 mm	100 pcs / box
X-U 27 P8 S15	1 (27)	0.157 (4.0)	Plastic 8 mm & Steel 15 mm	100 pcs / box
X-U 32 P8 S15	1-1/4 (32)	0.157 (4.0)	Plastic 8 mm & Steel 15 mm	100 pcs / box
X-U 32 P8 S36	1-1/4 (32)	0.157 (4.0)	Plastic 8 mm & Steel 36 mm	100 pcs / box
X-U 72 P8 S36	2-7/8 (72)	0.157 (4.0)	Plastic 8 mm & Steel 36 mm	100 pcs / box
X-U 16 P8 TH	5/8 (16)	0.157 (4.0)	8 mm plastic & metal "tophat"	100 pcs / box
X-U 19 P8 TH	3/4 (19)	0.157 (4.0)	8 mm plastic & metal "tophat"	100 pcs / box
X-U 27 P8 TH	1 (27)	0.157 (4.0)	8 mm plastic & metal "tophat"	100 pcs / box

For ordering information on DS and EDS fasteners, please refer to the Hilti product catalog or visit www.us.hiti.com or www.hilti.ca

¹ Allowable load based on a variable safety factor in accordance with Section F of ASIS 100-12.
2 Testing based on deflection slip clips developed in February 2007. Subsequent changes by the deflection slip clip manufacturer to the clip design may affect load values.
3 Allowable load values are based off of the connections tested. Steel members connected to the deflection slip clips must be investigated in accordance with accepted design criteria.
4 Spacing of fasteners depends on the design of each deflection slip clip. Fasteners should be installed through the preassigned locations in the deflection slip clip.
5 For edge distance requirement reference Section 3.2.1.2.2.
6 Allowable load values are for loads applied perpendicular to the edge of the base steel member.
7 Multiple fasteners are recommended for any attachment.
8 Allowable load values are based on testing into 1/4" ASTM A36 structural steel. Allowable load in other base steel thicknesses can be calculated as single fastener allowable load (Tension) x number of fasteners. Reference Table "Ultimate and Allowable Loads in Minimum ASTM A36 (Fy-36 ksi; Fu-258 ksi) Steel" on page 6 for single fastener allowable load sin specific steel thickness. Calculated allowable load should be compared with the relevant allowable load in this table to determine controlling resistance load.