GEOTECHNICAL EXPLORATION REPORT PROPOSED POLICE HEADQUARTERS 312 E. ALISAL STREET SALINAS, CALIFORNIA

Prepared for:

Griffin Structures, Inc.

2 Technology, Suite 150 Irvine, California 92618

Project No. 11693.001

August 31, 2017

August 31, 2017

Project No. 11693.001

Griffin Structures, Inc. 2 Technology, Suite 150 Irvine, California 92618

Attention: Mr. Gary Chubb

Subject: Geotechnical Exploration Report Proposed Police Headquarters 312 E. Alisal Street Salinas, California

Per your request and authorization, Leighton Consulting, Inc. (Leighton) is pleased to present this geotechnical exploration report for the proposed Police Headquarters located at 312 E. Alisal Street in the city of Salinas, California. The scope of work for this geotechnical exploration was outlined in our proposal dated June 20, 2017.

We understand that the proposed improvements for the Police Headquarters will include demolition of the existing structures and improvements to allow construction of a new 2-story Police Headquarters Building (44,275 square feet), a new 1-story Support Building (32,500 square feet), associated paved access roads and 371 parking stalls, and secure access entry points. It is our understanding that the southern portion of the project site is planned for future expansion. Other improvements will consist of underground utilities, landscape improvements and WQMP improvements.

Based on our exploration and analysis, the proposed improvements are considered feasible from a geotechnical standpoint. Presented in this report are findings and geotechnical recommendations to aid in the design and construction of the proposed improvements.

We appreciate this opportunity to be of service. If you have any questions regarding this report or if we can be of further service, please call us at your convenience at **(866)** *LEIGHTON*, directly at the phone extensions or e-mail addresses listed below.

Respectfully submitted,

LEIGHTON CONSULTING, INC.

Jeffrey M. Pflueger, PG, CEG 2499 Associate Geologist Ext 4257; jpflueger@leightongroup.com

Carl C. Kim, PE, GE 2620 Senior Principal Engineer Ext 4262; ckim@leightongroup.com

JMP/CCK/lr

Distribution: (1) Addressee

TABLE OF CONTENTS

<u>Secti</u>	ion	<u>P</u>	<u>age</u>
1.0	INTR	ODUCTION	1
	1.1 1.2	Site Description and Proposed Development Purpose and Scope of Exploration	1 2
2.0	GEO	TECHNICAL FINDINGS	5
	2.1 2.2	Geologic Setting Subsurface Soil Conditions	5 5
		 2.2.1 Expansive Soil Characteristics	6 7 8 8
	2.3 2.4	Groundwater Infiltration Characteristics	8 8
3.0	GEO	LOGIC/SEISMIC HAZARDS	. 10
	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	Surface Fault Rupture Strong Ground Shaking Historical Seismicity Liquefaction Potential Seismically-Induced Settlement Seismically-Induced Lateral Ground Displacements Seismically-Induced Landslides Flooding Seiches and Tsunamis Subsidence	. 10 . 10 . 12 . 13 . 13 . 14 . 14 . 14 . 14 . 15
4.0	FIND	INGS AND CONCLUSIONS	. 16
5.0	DESI	GN RECOMMENDATIONS	. 17
	5.1	Earthwork	. 17 17 17
	5.2 5.3	Foundation Recommendations Conventional Slab-On-Grade Recommendations	. 19 20
		5.3.1 Moisture Vapor Retarder	. 21
	5.4 5.5 5.6 5.7	Trench Backfill Surface Drainage Corrosion Protection Measures Retaining Walls	. 22 . 22 . 23 . 23

TABLE OF CONTENTS (continued)

7.0	REF	ERENCES	
6.0	LIMI	TATIONS	
	5.9	Additional Geotechnical Services	
	5.8	Pavement Design	24
<u>Secti</u>	ion		Page

LIST OF ATTACHMENTS

Important Information About Your Geotechnical Engineering Report	Rear of Text
--	--------------

FIGURES

Figure 1 – Site Location Map	Rear of Text
Figure 2 – Exploration Location Map	Rear of Text
Figure 3 – Geologic Cross-Sections A-A' and B-B'	Rear of Text
Figure 4 – Regional Geology Map	Rear of Text
Figure 5 – Regional Fault and Historical Seismicity Map	Rear of Text
Figure 6 – Liquefaction Susceptibility Map	Rear of Text
Figure 7 – Flood Hazard Map	Rear of Text
Figure 8 – Dam Inundation Map	Rear of Text
Figure 9 – Retaining Wall Backfill and Subdrain Detail	Rear of Text

APPENDICES

- Appendix A1 Boring Logs
- Appendix A2 CPT Plots and Data
- Appendix B Laboratory Test Results
- Appendix C Percolation Test Results
- Appendix D1 Seismicity Data
- Appendix D2 Liquefaction Analysis
- Appendix E General Earthwork and Grading Recommendations

1.0 INTRODUCTION

1.1 Site Description and Proposed Development

The project site for the proposed Police Headquarters is located at 312 E. Alisal Street in the city of Salinas, California (Figure 1, *Site Location Map*). It is bounded by E. Alisal Street and Murphy Street to the north, Murphy Street to the west, Southern Pacific Railroad to the southwest, and existing commercial properties and Work Street to the east. The eastern majority of the site consists of several one-story buildings, covered maintenance and/or storage structures, and asphalt paved access drives and parking areas associated with the former Monterey County Public Works facility. This portion of the site is currently being used as a storage facility for a waste management company. The western portion of the site consists of a gravel covered vacant parcel currently being used as a storage area for a trucking company.

Based on a review of historic aerial photos, the site appears to have been in roughly its current configuration since at least 1968 (NETR, 2017).

Based on review of the Site Plan for the project prepared by LPA, Inc., dated June 5, 2017, we understand that the proposed improvements for the Police Headquarters will include demolition of the existing structures and improvements to allow construction of a new 2-story Police Headquarters Building (44,275 square feet), a new 1-story Support Building (32,500 square feet), associated paved access roads and 371 parking stalls, and secure access entry points. It is our understanding that the southern portion of the project site is planned for future expansion. Other improvements will consist of underground utilities, landscape improvements and WQMP improvements. At this time, both the type of structure and loading information of the proposed building are not yet available for review. Based on the existing site conditions, we anticipate only minor grading will be required to prepare the site for the new construction.

The ground surface at the site is relatively flat but gently sloping with elevations across the site that range between approximate Elevations +50 and +53 feet mean sea level (msl). Review of the Salinas, California Quadrangle Topographic Map (USGS, 1947, Photorevised 1984) indicates sheet flow is generally toward the northwest.

1.2 <u>Purpose and Scope of Exploration</u>

The purpose of our geotechnical exploration was to evaluate the soil and groundwater conditions at the site through review of available data and exploratory borings in order to provide geotechnical recommendations to aid in design and construction for the project as currently proposed.

The scope of this geotechnical exploration included the following tasks:

- <u>Background Review</u> A background review was performed of readily available, relevant geotechnical and geological literature pertinent to the project site. References reviewed in preparation of this report are listed in Section 7.0.
- Field Exploration Our field exploration was performed on July 13 and 14, 2017, and consisted of three (3) hollow-stem auger borings (designated LB-1 through LB-3) drilled to depths between approximately 10 and 51 feet below existing ground surface (bgs). In addition, ten (10) Cone Penetration Test (CPT soundings were advanced to depths between approximately 42 and 51 feet bgs. The approximate locations of the borings and CPTs are shown on Figure 2, *Exploration Location Map.* Prior to the field exploration, the borings and CPTs were marked and Underground Service Alert (USA) was notified for utility clearance.

During drilling of the hollow-stem auger borings (LB-1 through LB-3), both bulk and drive samples were obtained from the borings for geotechnical laboratory testing. Drive samples were collected from the borings using a Modified California Ring sampler conducted in accordance with ASTM Test Method D3550. Standard Penetration Tests (SPTs) were also performed within the hollow-stem auger borings in accordance with ASTM Test Method D1586. The samplers were driven for a total penetration of 18 inches, unless practical refusal was encountered, using a 140-pound automatic hammer falling freely for 30 inches. The number of blows per 6 inches of penetration was recorded on the boring logs.

The borings were logged in the field by a member of our technical staff. Each soil sample collected was reviewed and described in accordance with the Unified Soil Classification System (USCS). The samples were sealed and packaged for transportation to our laboratory. After completion of drilling, two of the borings (LB-1 and LB-2) were backfilled with cement-bentonite grout to

approximately 5 feet bgs per the approved Monterey County Health Department (MCHD) Well Permit. It should be noted that a representative from MCHD was onsite during the backfill operations to verify that the borings were backfilled per the permit requirements. The remaining boring (LB-3) was converted to temporary percolation test well for subsequent percolation testing, and backfilled with excess soil cuttings after completion of the percolation test. The CPTs were backfilled with bentonite grout. The boring and CPT logs are presented in Appendix A, *Field Exploration Logs*.

- <u>Laboratory Testing</u> –Laboratory tests were performed on representative soil samples to evaluate geotechnical engineering properties of subsurface materials. The following laboratory tests were performed:
 - In-situ Moisture Content and Dry Density (ASTM D2216 and ASTM D2937);
 - Atterberg Limits (ASTM D4318);
 - Expansion Index (ASTM D4829);
 - Modified Proctor Compaction Test (ASTM D1557);
 - Direct Shear (ASTM D 3080);
 - Consolidation (ASTM D2435);
 - R-value (DOT CA 301); and
 - Corrosivity (Soluble Sulfate ASTM C1580, Soluble Chloride ASTM C1411-09, pH ASTM D4972, and Resistivity ASTM G187-12a).

The in-situ moisture and density of soil samples at depths are shown on the borings logs included in Appendix A. The results of the remaining laboratory tests are presented in Appendix B, *Laboratory Test Results*.

 <u>Percolation Testing</u> – Boring LB-3 was drilled to 10 feet bgs and converted to a temporary percolation test well upon completion of drilling and sampling. Boring LB-3 was located in the central portion of the site within the main proposed parking lot area. In-situ percolation testing was performed in general accordance with City of Salinas *Stormwater Development Standards* (*SWDS*) for New Development and Significant Redevelopment Projects (City of Salinas, 2010). Refer to the discussion of infiltration rate presented in Section 2.4 and the field percolation test data provided in Appendix C, *Percolation Test Results*.

- <u>Engineering Analysis</u> Geotechnical analysis was performed on the collected data to develop conclusions and recommendations for design and construction of the planned improvements.
- <u>Report Preparation</u> This geotechnical report presents our findings, conclusions, and recommendations.

It should be noted that the recommendations in this report are subject to the limitations presented in Section 6.0 of the report.

2.0 GEOTECHNICAL FINDINGS

2.1 <u>Geologic Setting</u>

The site is located in the Salinas River Valley approximately 9.3 miles inland from Monterey Bay within the Coast Ranges geomorphic province of Central California. The Coast Ranges province makes up the coastal region of central and northern California and is characterized by northwest trending mountain ranges and valleys oriented subparallel to the San Andreas fault. The San Andreas fault is a major tectonic transform plate boundary and right-lateral strikeslip fault system that extends from the Gulf of California in Mexico to Cape Mendocino in northern California. The Coast Ranges are generally between 2,000 and 6,000 feet above sea level, and are composed of thick Mesozoic and Cenozoic sedimentary rocks. The northern and southern portions of the Coast Ranges are separated by a depression that contains the San Francisco Bay. The Salinas River Valley is a fault bounded topographically low coastal valley setting bordered by the Sierra de Salinas and the Gabilan Ranges on the southwest and northwest sides, respectively. There are no active faults known to cross the project site and the site is not mapped within an Alguist-Priolo Earthquake Fault Zone (Bryant and Hart, 2007). The closest active fault to the site (6.7 miles away) is the Rinconada fault.

The site is located approximately 3.3 miles northeast of the Salinas River. The near-surface native soils at the site are Quaternary-age (Holocene) young alluvial valley and flood plain deposits (Dibblee and Minch, 2007) comprised of varying proportions of gravel, sand, silt, and clay likely deposited by the Salinas River and its tributaries. A map showing the mapped geologic units in the vicinity of the project site is presented as Figure 4, *Regional Geology Map*.

2.2 <u>Subsurface Soil Conditions</u>

Based on our subsurface explorations, the site is underlain by a relatively thin veneer of artificial fill materials overlying Quaternary-age young alluvial valley and flood plain deposits. The stratigraphy of the subsurface soils encountered in each soil boring is presented in the boring logs (Appendix A), and a general description of the earth materials as encountered are described below:

<u>Artificial Fill</u>: The existing near-surface artificial fill soils encountered in our exploratory borings are approximately 2 to 4 feet thick across the project site and consist primarily of brown to dark brown, moist, clay. Localized thicker

accumulations of fill materials should be anticipated during future earthwork construction. There are also several documented areas of previously removed underground storage tanks (USTs). The fill at former UST locations is anticipated to be on the order of 20 feet bgs. The existing artificial fill materials encountered at the site are likely associated with the existing improvements and initial development of the site. However, records documenting observation and testing during fill placement were not available for review. Abandoned piping and miscellaneous debris should also be anticipated to be encountered during future earthwork construction.

<u>Quaternary Age Young Alluvial Valley and Flood Plain Deposits:</u> The Quaternary age young alluvial valley and flood plain deposits encountered beneath the artificial fill materials in our exploratory borings and CPTs generally varies between the northern and southern portions of the project site. The alluvial soils as encountered in the northern portion of the site (boring LB-1) generally consist of medium brown to olive gray, moist to very moist, medium stiff to very stiff clay with interbedded silt and silty fine sand in the upper approximately 5 to 20 feet bgs. It should be noted that abundant black ash and remnants of burnt organic material was encountered within the clay in boring LB-1 between approximately 30 and 35 feet bgs. The alluvial soils as encountered in the southern portion of the site (boring LB-2) generally consist of interbedded medium brown, moist, stiff to very stiff silt, clayey silt, silty clay, clay in the upper approximately 20 feet bgs. Below approximately 20 feet bgs in the southern portion of the site, the alluvial soils generally consist of interbedded light yellow brown, slightly moist to moist, medium dense to very dense, silty sand, sand and gravelly sand.

The stratigraphy of the subsurface soils encountered in each soil boring is presented in the boring and CPT logs (Appendix A). The general subsurface conditions across the site are depicted on Figure 3, *Geologic Cross-Sections A-A' and B-B'*.

2.2.1 Expansive Soil Characteristics

Expansive soils contain significant amounts of clay particles that swell considerably when wetted and shrink when dried. Foundations constructed on these soils are subject to uplifting forces caused by the swelling. Without proper mitigation measures, heaving and cracking of both building foundations and slabs-on-grade could result. Based on our exploration, the near surface onsite soils consist predominantly of silty sand, clayey sand, sandy clay, sandy silt, to clayey silt. The laboratory

test result of representative near-surface (upper 5 feet) samples from borings LB-1 and LB-2 indicate medium to high expansion potential when wetted (EI = 78 and EI = 101). Accordingly, we recommend that the nearsurface onsite soils be assumed to have <u>high</u> expansion potential.

Variance in expansion potential of onsite soil is anticipated; therefore, additional testing is recommended upon completion of rough grading to confirm the expansion potential result presented in this report. Standard engineering and earthwork construction practices, such as proper foundation design and controlled moisture conditioning or mixing with non-expansive soils will reduce the impacts associated with expansive soils.

2.2.2 Soil Corrosivity

In general, soil environments that are detrimental to concrete have high concentrations of soluble sulfates and/or pH values of less than 5.5. Section 4.3 of ACI 318 (ACI, 2011). The 2016 California Building Code (CBC), provides specific guidelines for the concrete mix-design when the soluble sulfate content of the soil exceeds 0.1 percent by weight or 1,000 parts per million (ppm). The minimum amount of chloride ions in the soil environment that are corrosive to steel, either in the form of reinforcement protected by concrete cover or plain steel substructures, such as steel pipes, is 500 ppm per California Test 532. Concentrations of chloride ions above the stated concentration or other characteristics such as soil resistivity or redox potential may warrant special corrosion protection measures.

For screening purposes, representative near-surface (upper 5 feet) bulk samples from borings LB-1 and LB-2 indicate were tested from borings LB-1 and LB-2 to provide a preliminary evaluation of corrosivity. The test results indicates soluble sulfate concentrations of 114 to 143 ppm, chloride contents of 85 to 147 ppm, pH values of 6.94 to 8.15, and minimum resistivity values of 928 to 1090 ohm-cm.

The results of the resistivity test indicate that the underlying soil is severely corrosive to buried ferrous metals per ASTM STP 1013. Based on the measured water-soluble sulfate contents from the soil samples, concrete in contact with the soil is expected to have negligible exposure to sulfate attack per ACI 318-11. The samples tested for water-soluble chloride content indicate a low potential for corrosion of steel in concrete

due to the chloride content of the soil. The chemical analysis test results for the onsite soil from our geotechnical exploration are included in Appendix B of this report.

2.2.3 Soil Compressibility

Seven (7() samples of the onsite soils recovered from the borings were subjected to consolidation testing to evaluate the compressibility of these materials under loads representative of anticipated structural bearing stresses. Although not precisely known, the maximum dead plus live column load is estimated to be about 400 kips. The results of in-situ resistance testing in our explorations and laboratory consolidation testing indicate that the onsite soils generally have high compressibility below the bearing grade of the planned foundations. The results of testing are presented in Appendix B.

2.2.4 Shear Strength

Evaluation of the shear strength characteristics of the soils included laboratory Direct Shear testing. The results of testing are included in Appendix B.

2.3 <u>Groundwater</u>

Groundwater was encountered at a depth of about 19 feet during our subsurface exploration. Groundwater was encountered at a depth of 12 feet by others (Gecon Consultants, Inc., 2010). We recommend a design groundwater level of 10 feet bgs, which is the depth assumed in our analyses.

2.4 Infiltration Characteristics

In-situ percolation testing was performed to evaluate the infiltration characteristics of the site soil in the in the central in the central portion of the site within the main proposed parking lot area. In-situ percolation testing was performed in general accordance with City of Salinas *Stormwater Development Standards (SWDS) for New Development and Significant Redevelopment Projects* (City of Salinas, 2010).

Boring LB-3 was converted to a temporary percolation test well upon completion of drilling and sampling (Figure 2, *Exploration Location Map*). A 2-inch-diameter, perforated PVC pipe was placed in the borehole and the annulus was filled with

clean sand (#3 Monterey Sand) from approximately 4 to 10 feet bgs. After the conclusion of the percolation test, the PVC pipe was removed and the test hole was backfilled with excess soil cuttings.

The test was performed using a falling-head method which records the drop of water levels inside the well over the testing period. The measured infiltration rate for the percolation test was calculated by dividing the rate of discharge (i.e., volume of water discharged from the well during the test) by the infiltration surface area, or flow area. Taking into consideration of the drop in water level during the test, the flow area was determined based on the average water height within the test well at the end of the test period. Detailed results of the field testing data and measured infiltration rate for the test well are presented in Appendix C. The test results are summarized below:

 Table 1 – Measured (Unfactored) Infiltration Rate

Boring-Percolation Test Well Designation	Approximate Depth of Test Zone Below Ground Surface (feet bgs)	Measured Infiltration Rate (inches per hour)
LB-3	5 to 10	0.01

The test results indicate very low infiltration rates at the tested location and depth due to the fine grained silt and clay in this zone that generally do not provide adequate infiltration potential. The measured infiltration rate at test well location LB-3 (Figure 2) does not meet the minimum acceptable infiltration rate for stormwater infiltration practices (0.5 inches per hour) (City of Salinas, 2010).

3.0 GEOLOGIC/SEISMIC HAZARDS

Geologic and seismic hazards include surface fault rupture, seismic shaking, liquefaction, seismically-induced settlement, lateral spreading, seismically-induced landslides, flooding, seismically-induced flooding, seiches and tsunamis. The following sections discuss these hazards and their potential impact at the project site.

3.1 <u>Surface Fault Rupture</u>

Our review of available in-house literature indicates that no known active faults have been mapped across the site, and the site is not located within a designated Alquist-Priolo Earthquake Fault Zone (Bryant and Hart, 2007). Therefore, the potential for surface fault rupture at the site is expected to be low and a surface fault rupture hazard evaluation is not mandated for this site.

The location of the closest active faults to the site was evaluated using the United States Geological Survey (USGS) Earthquake Hazards Program National Seismic Hazard Maps (USGS, 2008c). The closest active faults to the site are the Rinconada Fault Zone, Zayante-Vergeles Fault Zone and the San Andreas fault, located approximately 6.4 miles, 15.8 miles, and 20.9 miles from the site, respectively. The San Andreas fault is the largest active fault in California. Major regional faults with surface expression in proximity to the site are shown on Figure 5, *Regional Fault and Historic Seismicity Map*).

3.2 Strong Ground Shaking

The site is located within a seismically active region, as is Southern California in general. The intensity of ground shaking at a given location depends primarily upon the earthquake magnitude, the distance from the source, and the site response characteristics. For the purpose of this report, the ground motion at the site due to earthquake shaking will be characterized by the code-based Peak Ground Acceleration (PGA_M) and the design response spectrum.

The code-based Peak Ground Acceleration (PGA_M) for the site was calculated at 0.603g using the United States Geological Survey (USGS) web-based U.S. Seismic Design Maps application (USGS, 2013a). The PGA_M corresponds to a modal earthquake with a probability of exceedance of 2 percent in 50 years (i.e., 2475-year return period). The modal earthquake is a Magnitude 6.6 earthquake with a distance of approximately 18.6 kilometers (11.6 miles) from the site (USGS, 2013b). The seismicity data are also included in Appendix D1.

The code-based site response spectra parameters for the design earthquake are as follows:

Categorization/Coefficients	Code-Based
Site Longitude (decimal degrees) West	-121.64497
Site Latitude (decimal degrees) North	36.67415
Site Class	E
Risk Category	IV
Mapped Peak Ground Acceleration adjusted for Site Class Effects PGA _M	0.543g
Mapped Spectral Response Acceleration at 0.2s Period, S_S	1.591g
Mapped Spectral Response Acceleration at 1s Period, S ₁	0.590g
Seismic Design Category (S ₁ <0.75g)	D
Short Period Site Coefficient at 0.2s Period, F_a	0.9
Long Period Site Coefficient at 1s Period, F_v	2.4
Adjusted Spectral Response Acceleration at 0.2s Period, S_{MS}	1.432g
Adjusted Spectral Response Acceleration at 1s Period, S_{M1}	1.417g
Design Spectral Response Acceleration at 0.2s Period, S_{DS}	0.955g
Design Spectral Response Acceleration at 1s Period, S_{D1}	0.945g

 Table 2a – Seismic Design Parameters for Police Headquarters

Table 3b – Seismic Design Parameters for Support Building

Categorization/Coefficients	Code-Based
Site Longitude (decimal degrees) West	-121.64607
Site Latitude (decimal degrees) North	36.67366
Site Class	E
Risk Category	II
Mapped Peak Ground Acceleration adjusted for Site Class Effects PGA _M	0.542g
Mapped Spectral Response Acceleration at 0.2s Period, S_S	1.603g
Mapped Spectral Response Acceleration at 1s Period, S_1	0.589g
Seismic Design Category (S ₁ <0.75g)	D
Short Period Site Coefficient at 0.2s Period, F_a	0.9
Long Period Site Coefficient at 1s Period, F_v	2.4
Adjusted Spectral Response Acceleration at 0.2s Period, S_{MS}	1.442g
Adjusted Spectral Response Acceleration at 1s Period, S_{M1}	1.415g
Design Spectral Response Acceleration at 0.2s Period, S_{DS}	0.962g
Design Spectral Response Acceleration at 1s Period, S_{D1}	0.943g

Seismic response spectra parameters were computed per Chapter 11 of ASCE 7-10 using the Seismic Design Map Tool, Version 3.1.0, last updated on June 23, 2014 by the United States Geological Survey (USGS).

No site-specific ground motion analysis is required because structures at the site will be assigned to Seismic Design Category D based on S_1 is less than 0.75g.

3.3 <u>Historical Seismicity</u>

Although Southern California has been seismically active during the past 200 years, written accounts of only the strongest shocks survive the early part of this period. Early descriptions of earthquakes are rarely specific enough to allow an association with any particular fault zone. It is also not possible to precisely locate epicenters of earthquakes that have occurred prior to the twentieth century.

A search of historical earthquakes was performed using the computer program EQ Search (Blake, 2015) for the time period between 1800 and 2015. Within that time frame, 485 earthquakes between magnitude 4.00 and 9.0 were found within a 62-mile (100-kilometer) radius of the site. Of these earthquakes, the closest were a series of earthquakes located approximately 1.4 miles (2.3 kilometers) from the site, and occurred in 1916 and 1931 (Appendix D1, *Seismicity Data*). Although not precisely located, the epicenter for each of these earthquake events is located to the southwest of the project site and registered magnitude 4.0 Mw and induced estimated peak ground accelerations (PGA) of 0.145g at the project site. The largest PGA at the site is estimated to have been roughly 0.284g from the magnitude 7.0 Mw earthquake that occurred on October 18, 1800.

There are records of two earthquakes with a magnitude 7.0 or larger within the search performed, which were both magnitude 7.0 Mw earthquakes that occurred on October 18, 1800 and October 17, 1989. For a general view of recorded historical seismic activity see Figure 5, *Regional Fault and Historic Seismicity Map*.

Review of additional data available from the Center for Engineering Strong Motion Data (CESMD) website (<u>http://strongmotioncenter.org/</u>) indicates that the highest recorded ground acceleration in the vicinity of the project site was 0.120g for a station located approximately 500 feet to the southeast of the project site at Salinas City Yard. The recorded ground acceleration was from the magnitude 7.0 Mw earthquake that occurred in Loma Prieta on October 17, 1989.

3.4 Liquefaction Potential

The term liquefaction is generally referenced to loss of strength and stiffness in soils due to build-up of pore water pressure when subject to cyclic or monotonic loading. Both sandy and clayey soils are susceptible to loss of strength and stiffness. Because of the difference in strength characteristic and methods for evaluating strength loss potential for granular and clayey soils, the term liquefaction is used for granular soils while cyclic softening is used for fine-grained soils (i.e. clays and plastic silts).

In general, adverse effects of liquefaction or cyclic softening include excessive ground settlement, loss of bearing support for structural foundations, and seismically induced lateral ground deformations.

As shown on Figure 6, *Liquefaction Susceptibility Map*, and based on information available through the Monterey County Resource Management Agency, the project site is located within an area that has been identified as highly susceptible to liquefaction. As a part of this geotechnical exploration report, we have evaluated the liquefaction potential at the site and estimate the corresponding seismically induced ground deformations using the computer program CLiq (v.1.7.6.49).

Based on our evaluation and analysis of the 10 CPTs, the potential for liquefaction at the site is low. Results are shown in Appendix E.

Only CPT-6 located in the southernmost portion of the site indicated any liquefaction potential. Considering that liquefaction requires relatively continuous susceptible layers over a broad area, the isolated result from CPT-6 is not deemed representative of the actual hazard. The overall potential for liquefaction at the site is deemed low.

3.5 Seismically-Induced Settlement

Strong ground motion during earthquakes tends to rearrange looser soils particles into a more compact arrangement, especially in granular soil deposits. The cumulative effects of soil particles rearrangement during earthquake ground shaking will result in settlement. In general, a poorly graded granular deposit is more susceptible to settlement than a fine-grained or well-graded soil.

Based on our analysis of the CPTs, seismically-induced settlement at the site is expected to be on the order of 1 inch or less. Larger settlement was calculated

for CPT-6 (about 1¹/₂ inches). However, that result is deemed to be an inconsistent outlier.

3.6 Seismically-Induced Lateral Ground Displacements

Depending on the site topography, modes of seismically induced lateral ground displacement associated with soil liquefaction consist of, ground oscillation (ground slope less than 0.3 percent), lateral spread (0.3 to 5 percent ground slope), or flow failure (ground slope greater than 5 percent). Based on the relatively level topography and the low potential for liquefaction, the potential for lateral ground displacement is low.

3.7 <u>Seismically-Induced Landslides</u>

The potential for seismically induced landsliding is considered low due to the location of the site and the lack of slopes at or nearby the site. Proposed slopes, if any, should be engineered and constructed at a gradient of 2:1 (horizontal:vertical) or flatter.

3.8 Flooding

According to a Federal Emergency Management Agency (FEMA) flood insurance rate map (FEMA, 2008), the project site is located within "Zone X," which corresponds to a 0.2% annual chance flood hazard area or 500-year flood hazard zone (Figure 7, *Flood Hazard Zone Map*).

Earthquake-induced flooding can be caused by failure of dams or other waterretaining structures as a result of earthquakes. The project site is located within a flood impact zone for the Nacimiento and San Antonio Dams as indicated on Figure 8, *Dam Inundation Map*. However, catastrophic failure of this dam is expected to be a very unlikely event in that dam safety regulations exist and are enforced by the Division of Safety of Dams, Army Corp of Engineers and Department of Water Resources. Inspectors may require dam owners to perform work, maintenance or implement controls if issues are found with the safety of the dam. Therefore, it is our opinion that the potential for seismically induced flooding to affect the site due to dam failure is low.

3.9 Seiches and Tsunamis

Seiches are large waves generated in very large enclosed bodies of water or partially enclosed arms of the sea in response to ground shaking. Tsunamis are

waves generated in large bodies of water by fault displacement or major ground movement. Based on the inland location of the project site and the lack of large enclosed water bodies nearby, seiche and tsunami risks are considered very low.

3.10 Subsidence

Subsidence is sinking of the Earth's surface in response to geologic or maninduced causes. Subsurface solution of limestone during cave formation may lead to a series of subsidence features at the ground surface, which, collectively, are termed karst topography. Since the site is not underlain by limestone, the potential for subsidence to affect the site due to this condition is not a consideration for the project.

4.0 FINDINGS AND CONCLUSIONS

No evidence of adverse geological or geotechnical hazards was noted at the site that will preclude the development of the project. Presented below is a summary of findings based upon the results of our geotechnical evaluation of the site:

- The site is not located in a designated Alquist-Priolo Earthquake Fault Zone. The nearest fault to the site is the Rinconada fault which is located more than 6 miles from the site. The site is expect to experience moderate to strong ground shaking resulting from an earthquake from one of the major regional faults.
- The site is located within an area shown as highly susceptible to liquefaction. However, based on our evaluation and analysis of the ten (10) CPTs, the potential for liquefaction at the site is low.
- The onsite undisturbed soils should exhibit adequate strength when subjected to the anticipated loading of the proposed improvements.
- Based on field observations and comparison of laboratory test results to California Building Code guidelines for expansive soils (CBC, 2016), the near surface onsite soils exhibit moderate to high potential for expansion when subjected to an increase in moisture.
- Concrete in contact with the near surface onsite soil is expected to have low exposure to water-soluble sulfates and low exposure to chloride in the soil. The onsite soil is considered severely corrosive to ferrous metal.
- The subsurface soils are anticipated to be readily excavated using conventional earthmoving equipment in good working condition.

5.0 DESIGN RECOMMENDATIONS

Geotechnical recommendations for the proposed development are presented in the following sections and are intended to provide sufficient geotechnical information to develop the project in general accordance with 2016 CBC requirements. The geotechnical consultant should review the grading plan, foundation plan and specifications as they become available to verify that the recommendations presented in this report have been incorporated into the plans prepared for the project.

5.1 <u>Earthwork</u>

Site grading recommendations are presented in the following paragraphs. The General Earthwork and Grading Recommendations are included in Appendix E. In case of conflict the following recommendations shall supersede those provided in Appendix E.

5.1.1 Site Preparation

Prior to construction, the project areas should be cleared of any existing improvements, vegetation, trash and debris, which should be properly disposed of offsite. Efforts should be made to remove or reroute any existing utility lines that interfere the proposed construction. Any resulting cavities should be properly backfilled and compacted.

5.1.2 Site Grading

A majority of the project area is covered with artificial fill (encountered between approximately 2 and 4 feet bgs at the boring locations). Localized thicker accumulations of undocumented fill materials should be anticipated during future earthwork construction (on the order of up to 20 feet bgs at former UST locations). To provide a uniform support and reduce the potential for differential settlement, all existing fill should be removed to expose suitable native soils and replaced as engineered fill to provide supports for the proposed buildings and other structural improvements. Removals should be performed such that a minimum of 3 feet of engineered fill is established below the bottom of all new foundations. Where feasible, overexcavation and recompaction should extend a minimum horizontal distance of 3 feet from the edges of the foundations).

For new improvements outside the building footprint not structurally connected to the new buildings (i.e. pavement areas), the existing fill should be removed to a depth to allow placement of 1 foot of engineered fill under the planned improvements. The engineered fill should extend at least 1 foot beyond the edge of the new improvements.

Due to the expansive nature of near-surface soils, all concrete slabs on grade, including floor slabs, should be underlain by at least 2 feet of relatively non-expansive soils.

Leighton should verify the vertical and lateral removal limits during grading as local conditions may require additional removals (i.e., encountering additional undocumented fill or other deleterious materials).

<u>Subgrade Preparation</u>: After completion of the overexcavations and prior to fill placement, the moisture content of the soils should be determined, and the soils slowly and uniformly moistened (or dried) as necessary to bring the soils to a uniform moist condition and compacted to at least 90 percent relative compaction based on ASTM Test Method D 1557. Any soft or unsuitable earth materials encountered at the bottom of the excavations should be removed and replaced with compacted fill.

All concrete slabs on grade, including floor slabs, should be underlain by at least 2 feet of relatively non-expansive engineered fill.

<u>Fill Placement</u>: The onsite soils, less any deleterious material or organic matter, can be used in required fills. Oversized material greater than 6 inches in maximum dimension should not be placed in the fill. Inert construction debris (processed to be less than 4 inches in maximum dimension) may be used in engineered fill, except within the upper 2 feet below concrete slabs-on-grade, which should be constructed with relatively non-expansive fill. Any soil to be placed as fill, whether onsite soils or imported material, should be reviewed and possibly tested by Leighton.

All fill soils should be placed in loose lifts not exceeding 8 inches, moisture-conditioned to at least 2 to 4 percentage points above optimum moisture content, and compacted to a minimum of 90 percent of the maximum dry density as determined by ASTM Test Method D 1557. The optimum lift thickness to produce a uniformly compacted fill will depend on

the type and size of compaction equipment used. Aggregate base for pavement should be compacted to a minimum of 95 percent relative compaction.

Any required import material should consist of non-corrosive and predominantly granular soils with an Expansion Index (EI) of 20 or less. The imported materials should contain sufficient fines (binder material) so as to result in a stable subgrade when compacted. All proposed import materials should be approved by the geotechnical engineer of record prior to being transported to the site.

<u>Shrinkage and Bulking</u>: The change in volume of excavated and recompacted soil varies according to soil type and location. This volume change is represented as a percentage increase (bulking) or decrease (shrinkage) in volume of fill after removal and recompaction. Field and laboratory data used in our calculations included laboratory-measured maximum dry density for the general soil type encountered at the subject site, the measured in-place densities of near surface soils encountered and our experience. We preliminarily estimate the onsite undocumented fill and alluvial materials requiring removal and recompaction will have a shrinkage factor of approximately 10 percent during grading.

The level of fill compaction, variations in the dry density of the existing soils and other factors influence the amount of volume change. Some adjustments to earthwork volume should be anticipated during grading of the site.

5.2 **Foundation Recommendations**

We recommend that the proposed buildings be supported on a shallow spread footing foundation system established on undisturbed natural soils or engineered fill. Foundations may be designed to impose an average bearing pressure of 2,000 pounds per square foot (psf). A one-third increase in the bearing value for short duration loading, such as wind or seismic forces, may be used.

The recommended bearing value is a net value, and the weight of concrete in the footings can be taken as 50 pounds per cubic foot (pcf); the weight of soil backfill can be neglected when determining the downward loads.

Footings should have a minimum width of 12 inches for continuous footings and 18 inches for isolated footings. Footings should have a minimum embedment of 12 inches below the lowest adjacent grade.

Lateral loads can be resisted by soil friction and by the passive resistance of the soils. A coefficient of friction of 0.25 can be used between the footings and the floor slab and the supporting soils.

The ultimate passive resistance of undisturbed natural soils can be assumed to be equal to the pressure developed by a fluid with a density of 250 pounds per cubic foot (pcf). The ultimate passive resistance of engineered fill can be assumed to be equal to the pressure developed by a fluid with a density of 300 pcf.

The friction resistance and the passive resistance of the soils can be combined without reduction in determining the total lateral resistance.

The estimated total settlement of the structures supported on spread footings as recommended above is less than 1½ inch. The differential settlement between adjacent columns is estimated to be less than ½ inch over a horizontal distance of 30 feet.

5.3 <u>Conventional Slab-On-Grade Recommendations</u>

Concrete slabs may be designed using a modulus of subgrade reaction of 100 pci provided the subgrade is prepared as described in Section 5.1 (underlain by at least 2 feet of relatively non-expansive natural soils or engineered fill). From a geotechnical standpoint, we recommend slab-on-grade be a minimum 5 inches thick with No. 3 rebar placed at the center of the slab at 24 inches on center in each direction. The structural engineer should design the actual thickness and reinforcement based on anticipated loading conditions. Where moisture-sensitive floor coverings or equipment is planned, the slabs should be protected by a minimum 10-mil-thick vapor barrier between the slab and subgrade. A coefficient of friction of 0.35 can be used between the floor slab and the vapor barrier.

Minor cracking of concrete after curing due to drying and shrinkage is normal and should be expected; however, concrete is often aggravated by a high water/cement ratio, high concrete temperature at the time of placement, small

nominal aggregate size, and rapid moisture loss due to hot, dry, and/or windy weather conditions during placement and curing. Cracking due to temperature and moisture fluctuations can also be expected. The use of low-slump concrete or low water/cement ratios can reduce the potential for shrinkage cracking. Additionally, our experience indicates that the use of reinforcement in slabs and foundations can generally reduce the potential but not eliminate for concrete cracking.

To reduce the potential for excessive cracking, concrete slabs-on-grade should be provided with construction or weakened plane joints at frequent intervals. Joints should be laid out to form approximately square panels.

5.3.1 Moisture Vapor Retarder

The following recommendations are for informational purposes since they are unrelated to the geotechnical performance of the foundation. Post-construction moisture migration should be expected below the foundation.

In general, interior floor slabs at or near the existing ground surface with moisture sensitive floor coverings are recommended to be underlain by a minimum 10-mil thick vapor retarder that has a permeance of less than 0.3 perms, as determined by ASTM E 96, and meets the applicable code requirements (ASTM E1745). The use of a capillary moisture break (crushed gravel layer) in conjunction with a vapor retarder is not considered to be necessary due to the lack of shallow groundwater conditions unless required by code. A sand layer below the synthetic sheeting will, however, serve to protect the sheeting from punctures if the underlying soils or gravel layer contain sharp, angular particles. Sand layer thickness above the barrier should be determined by the engineer/architect as they deem necessary. Sand layers should be installed where applicable in accordance with ACI Publication 302 Guide for Concrete Floor and Slab Construction.

Leighton does not practice in the field of moisture vapor transmission evaluation, since this is not specifically a geotechnical issue. Therefore, we recommend that a qualified person, such as the flooring subcontractor and/or structural engineer, be consulted to evaluate the general and specific moisture vapor transmission paths and any impact on the proposed construction. That person should provide recommendations for

mitigation of potential adverse impact of moisture vapor transmission on various components of the structures as deemed appropriate.

5.4 Trench Backfill

Utility trenches should be backfilled with compacted fill in accordance with Sections 306-1.2 and 306-1.3 of the Standard Specifications for Public Works Construction, ("Greenbook"), Latest Edition. Utility trenches can be backfilled with onsite material free of rubble, debris, organic and oversized material up to 3 inches in largest dimension. Prior to backfilling trenches, pipes should be bedded in and covered with either:

- (1) Granular Bedding: 1) ½-inch open grade aggregate or 2) a uniform sand material with a Sand Equivalent (SE) greater-than-or-equal-to 30, passing the No. 4 U.S. Standard Sieve (or as specified by the pipe manufacturer), water densified in place, or
- (2) **CLSM:** Controlled Low Strength Material (CLSM) conforming to Section 201-6 of the *Standard Specifications for Public Works Construction,* ("Greenbook"), latest Edition.

Pipe bedding should extend at least 4 inches below the pipeline invert and at least 12 inches over the top of the pipeline. Native and clean fill soils can be used as backfill over the pipe bedding zone, and should be placed in thin lifts, moisture conditioned above optimum, and mechanically compacted to at least 90 percent relative compaction, relative to the ASTM D1557 laboratory maximum density.

5.5 <u>Surface Drainage</u>

Positive drainage of surface water away from structures is very important. Water should not be allowed to pond adjacent to buildings. Positive drainage may be accomplished by providing drainage away from buildings a minimum of 2 percent for earthen surfaces for a lateral distance of at least five feet and further maintained by a swale or drainage path at a gradient of at least 1 percent. Where necessary, drainage paths may be shortened by the use of area drains and collector pipes. Eave gutters are recommended and should reduce water infiltration into the subgrade materials. Downspouts should be connected to appropriate outlet devices.

Irrigation of landscaping should be controlled to maintain, as much as possible, consistent moisture content sufficient to provide healthy plant growth without over watering.

5.6 Corrosion Protection Measures

Two representative bulk soil samples were tested to evaluate corrosion potential to buried concrete (e.g., footings, retaining walls). The chemical analysis test results are summarized in Table 7 below.

	Test Results	
Test Parameter	Borings LB-1 and LB-2 at 0' to 5'	General Classification of Hazard
Water-Soluble Sulfate in Soil (ppm)	114 to 143	Negligible sulfate exposure to buried concrete
Water-Soluble Chloride in Soil (ppm)	85 to 147	Non-corrosive to embedded steel
рН	6.94 to 8.15	Neutral to alkaline
Minimum Resistivity (saturated, ohm-cm)	928 to 1090	Severely Corrosive to buried metals

Table 4 – Chemical Analysis Test Results

¹ASTM STP 1013 titled Effect of Soil Characteristics on Corrosion (February, 1989)

Based on the results of laboratory testing, reinforced concrete structures in contact with the onsite soil are expected to have negligible exposure to water-soluble sulfates and chloride in the soil. Common Type II cement may be used for concrete construction onsite and the concrete should be designed in accordance with CBC 2016 requirements. However, concrete exposed to recycled water should be designed using Type V cement.

Based on our laboratory testing, the near-surface onsite soil is considered severely corrosive to ferrous metals. Typical corrosion protection in accordance with the Greenbook and the Plumbing Code should be provided.

5.7 <u>Retaining Walls</u>

We recommend that retaining walls be backfilled with very low expansive soil and constructed with a backdrain in accordance with the recommendations provided on Figure 9. Using expansive soil as retaining wall backfill will result in higher

lateral earth pressures exerted on the wall. Based on these recommendations, the following parameters may be used for the design of conventional retaining walls:

Equivalent Fluid Pressure (psf/ft)			
Condition	Level Backfill		
Active	40		
Seismic Increment (Additive to Active Pressure)	20		
At-Rest	65		
Passive	250		
Coefficient of Friction	0.25		

 Table 5 – Conventional Retaining Wall Design Parameters

Cantilever walls that are designed to yield at least 0.001H, where H is equal to the wall height, may be designed using the active condition. Rigid walls and walls braced at the top should be designed using the at-rest condition.

Foundation design recommendations for retaining walls are presented in Section 5.2 of the report.

In addition to the above lateral forces due to retained earth, surcharge due to improvements, such as an adjacent structure or traffic loading, should be considered in the design of the retaining wall. Loads applied within a 1:1 projection from the surcharging structure on the stem of the wall should be considered in the design.

The onsite soil is expansive and should not be used for retaining wall backfill.

5.8 Pavement Design

The paving thicknesses presented in the tables below are based on the currently available subsurface data. We assumed an average R-value of 5 for design base on the results of laboratory testing.

The required paving and base thicknesses will depend on the expected wheel loads and volume of traffic (Traffic Index or TI). Assuming that the paving subgrade will consist of the on-site or comparable soils compacted to at least 95% of the maximum dry density obtainable by the ASTM Designation D1557

method of compaction as recommended, the minimum recommended paving thicknesses are presented in the following table:

Area	Traffic Index (TI)	Asphalt Concrete (inches)	Base Course (inches)
Car Parking	4	3	8
Light Truck	5	3	10
Heavy Truck	6	4	12
Main Drives	7	4	16

 Table 6 – Preliminary Asphalt Concrete Pavement Structural Section

The asphalt paving sections were determined using the Caltrans design method. We can determine the recommended paving and base course thicknesses for other Traffic Indices if required. Careful inspection is recommended to verify that the recommended thicknesses or greater are achieved, and that proper construction procedures are followed.

Portland cement concrete paving sections as well as all other concrete slabs and walks supported on grade should be underlain by at least 2 feet of properly compacted fill consisting of relatively non-expansive natural soils or engineered fill. We have assumed that such a subgrade will have an R-value of at least 40, which will need to be verified during grading.

Portland cement concrete (PCC) paving sections were determined in accordance with procedures developed by the Portland Cement Association. PCC paving sections for a range of Traffic Indices are presented in the following table. We have assumed that the Portland Cement Concrete will have a compressive strength of at least 3,000 pounds per square inch.

Area	Traffic Index (TI)	Asphalt Concrete (inches)	Base Course (inches)
Car Parking	4	6 ½	4
Light Truck	5	7	4
Heavy Truck	6	7 ½	4

 Table 7 – PCC Pavement Structural Section

The paving should be provided with expansion joints at regular intervals no more than 15 feet in each direction. Load transfer devices, such as dowels or keys, are

recommended at joints in the paving to reduce possible offsets. The paving sections in the above table have been developed based on the strength of unreinforced concrete. Steel reinforcing may be added to the paving to reduce cracking and to prolong the life of the paving.

The base course should conform to requirements of Section 26 of State of California Department of Transportation Standard Specifications (Caltrans), latest edition, or meet the specifications for untreated base as defined in Section 200-2 of the latest edition of the Standard Specifications for Public Works Construction (Green Book). The existing asphalt paving may be used for base course if it is crushed and processed to meet the requirements of crushed miscellaneous base per the Green Book. The base course should be compacted to at least 95 percent relative compaction. The asphalt concrete should conform to the specifications outlined in Section 203-6 of the Green Book, and asphalt concrete construction methods should meet the requirements of Section 302-5 of the Green Book.

5.9 Additional Geotechnical Services

The geotechnical recommendations presented in this report are based on subsurface conditions as interpreted from limited subsurface explorations, limited laboratory testing and information available at the time the report is prepared. Additional geotechnical investigation and analysis may be required based on final improvement plans. Leighton should review the site and grading plans when available and comment further on the geotechnical aspects of the project. Geotechnical observation and testing should be conducted during excavation and all phases of grading operations. Our conclusions and recommendations should be reviewed and verified by Leighton during construction and revised accordingly if geotechnical conditions encountered vary from our preliminary findings and interpretations.

Geotechnical observation and testing should be provided during the following activities:

- Grading and excavation of the site;
- During overexcavation of unsuitable soil.
- Subgrade preparation;
- Compaction of all fill materials;

- Utility trench backfilling and compaction;
- Footing excavation and slab-on-grade preparation;
- Pavement subgrade and base preparation;
- Placement of asphalt concrete and/or concrete; and
- When any unusual conditions are encountered.

6.0 **LIMITATIONS**

This report was based solely on data obtained from a limited number of geotechnical explorations, soil samples and tests. Such information is, by necessity, incomplete. The nature of many sites is such that differing soil or geologic conditions can be present within small distances and under varying climatic conditions. Changes in subsurface conditions can and do occur over time. Therefore, the findings, conclusions, and recommendations presented in this report are only valid if Leighton has the opportunity to observe subsurface conditions during grading and construction, to confirm that our preliminary data are representative for the site. Leighton should also review the construction plans and project specifications, when available, to comment on the geotechnical aspects.

This report was prepared using the degree of care and skill ordinarily exercised, under similar circumstances, by reputable geotechnical consultants practicing in this or similar localities. The findings, conclusion, and recommendations included in this report are considered preliminary and are subject to verification. We do not make any warranty, either expressed or implied.

7.0 **REFERENCES**

- American Concrete Institute, 2011, Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary, 2011.
- American Society of Civil Engineers (ASCE), 2013, Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-10, Third Printing, Errata Incorporated through March 15.
- Blake, T.F, 2015, EQSEARCH, A computer program for the estimate of Peak Horizontal Acceleration from California Historical Earthquake Catalogs, with Earthquake Catalog Data through January 29, 2015.
- Bryant, W.A., and Hart, E.W., Interim Revision 2007, Fault Rupture Hazard Zones in California, Alquist-Priolo Earthquake Fault Zoning Act with Index to Earthquake Fault Zones Maps: California Geological Survey, Special Publications 42, 42p.
- California Building Standards Commission, 2016, 2016 California Building Code (CBC), California Code of Regulations, Title 24, Part 2, Volume 2 of 2, Based on 2015 International Building Code, Effective January 1, 2017.
- California Department of Water Resources (DWR), 2017, Water Data Library, groundwater well data, accessed August 2017, <u>http://wdl.water.ca.gov</u>.
- California Geological Survey (CGS; formerly California Division of Mines and Geology, CDMG), 2000, CD-ROM containing digital images of Official Maps of Alquist-Priolo Earthquake Fault Zones that affect the Southern Region, DMG CD 2000-003 2000.
- City of Salinas, 2010, Stormwater Development Standards (SWDS) for New Development and Significant Redevelopment Projects, dated April 2010.
- Dibblee, T.W., and Minch, J.A., 2007, Geologic Map of the Marina and Salinas Quadrangles, Monterey County, California, Dibblee Geological Foundation Map DF-353, map scale 1:24,000.
- Federal Emergency Management Agency (FEMA), 2008, Map Number 06053C0217G, Effective Date September 26, 2008, Scale 1" = 1000' web site (https://hazards.fema.gov/femaportal/wps/portal/).

- Geocon Consultants, Inc., 2010, Soil and Groundwater Sampling and Geophysical Investigation Report, Monterey County Public Works, 312 East Alisal Street, Salinas, California, Project No. 8515-06-01, dated April 12, 2010
- Kilbourne, R.T., and Mualchin, L., 1980, Geology for Planning: Marina and Salinas 7¹/₂' Quadrangles, Monterey County, California, California Division of Mines and Geology, Open File Report 80-7.
- Nationwide Environmental Title Research, LLC (NETR), 2017, Historic Aerials by NETR Online, website: <u>http://www.historicaerials.com/aerials</u>, accessed August 2017.
- Public Works Standards, Inc., 2015, The "Greenbook", Standard and Specifications for Public Works Constructions, 2015 Edition, BNI Building News.
- Rosenberg, L.I., and Clark, J.C., 2009, Map of the Rinconada and Reliz Fault Zones, Salinas River Valley, California, U.S. Geological Survey Scientific Investigations Map 3059, map scale 1:250:000.
- State Water Resources Control Board, Geotracker, environmental database, <u>http://geotracker.waterboards.ca.gov/</u>
- United States Geological Survey (USGS), 1947, Photorevised 1984, Salinas Quadrangle, California Monterey County, 7.5 Minute Series (Topographic Series), map scale 1:24,000.
- _____, 2008c, National Seismic Hazard Maps Fault Parameters, http://geohazards.usgs.gov/cfusion/hazfaults_2008_search/query_main.cfm
- _____, 2013a, U.S. Seismic Design Maps, http://earthquake.usgs.gov/designmaps/us/application.php
- _____, 2013b, Unified Hazard Tool, <u>https://earthquake.usgs.gov/hazards/interactive/</u>
- _____, 2017a, Interactive Fault Map, http://earthquake.usgs.gov/hazards/qfaults/map/
- _____, 2017b, Interactive Geologic Map, <u>http://ngmdb.usgs.gov/maps/MapView/</u>

Important Information about This Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

The Geoprofessional Business Association (GBA) has prepared this advisory to help you - assumedly a client representative - interpret and apply this geotechnical-engineering report as effectively as possible. In that way, clients can benefit from a lowered exposure to the subsurface problems that, for decades, have been a principal cause of construction delays, cost overruns, claims, and disputes. If you have questions or want more information about any of the issues discussed below, contact your GBA-member geotechnical engineer. Active involvement in the Geoprofessional Business Association exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project.

Geotechnical-Engineering Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical-engineering study conducted for a given civil engineer will not likely meet the needs of a civil-works constructor or even a different civil engineer. Because each geotechnical-engineering study is unique, each geotechnical-engineering report is unique, prepared *solely* for the client. *Those who rely on a geotechnical-engineering report prepared for a different client can be seriously misled.* No one except authorized client representatives should rely on this geotechnical-engineering report without first conferring with the geotechnical engineer who prepared it. *And no one – not even you – should apply this report for any purpose or project except the one originally contemplated.*

Read this Report in Full

Costly problems have occurred because those relying on a geotechnicalengineering report did not read it *in its entirety*. Do not rely on an executive summary. Do not read selected elements only. *Read this report in full*.

You Need to Inform Your Geotechnical Engineer about Change

Your geotechnical engineer considered unique, project-specific factors when designing the study behind this report and developing the confirmation-dependent recommendations the report conveys. A few typical factors include:

- the client's goals, objectives, budget, schedule, and risk-management preferences;
- the general nature of the structure involved, its size, configuration, and performance criteria;
- the structure's location and orientation on the site; and
- other planned or existing site improvements, such as retaining walls, access roads, parking lots, and underground utilities.

Typical changes that could erode the reliability of this report include those that affect:

- the site's size or shape;
- the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light-industrial plant to a refrigerated warehouse;
- the elevation, configuration, location, orientation, or weight of the proposed structure;
- the composition of the design team; or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes – even minor ones – and request an assessment of their impact. *The geotechnical engineer who prepared this report cannot accept responsibility or liability for problems that arise because the geotechnical engineer was not informed about developments the engineer otherwise would have considered.*

This Report May Not Be Reliable

Do not rely on this report if your geotechnical engineer prepared it:

- for a different client;
- for a different project;
- for a different site (that may or may not include all or a portion of the original site); or
- before important events occurred at the site or adjacent to it; e.g., man-made events like construction or environmental remediation, or natural events like floods, droughts, earthquakes, or groundwater fluctuations.

Note, too, that it could be unwise to rely on a geotechnical-engineering report whose reliability may have been affected by the passage of time, because of factors like changed subsurface conditions; new or modified codes, standards, or regulations; or new techniques or tools. *If your geotechnical engineer has not indicated an "apply-by" date on the report, ask what it should be*, and, in general, *if you are the least bit uncertain* about the continued reliability of this report, contact your geotechnical engineer before applying it. A minor amount of additional testing or analysis – if any is required at all – could prevent major problems.

Most of the "Findings" Related in This Report Are Professional Opinions

Before construction begins, geotechnical engineers explore a site's subsurface through various sampling and testing procedures. *Geotechnical engineers can observe actual subsurface conditions only at those specific locations where sampling and testing were performed.* The data derived from that sampling and testing were reviewed by your geotechnical engineer, who then applied professional judgment to form opinions about subsurface conditions throughout the site. Actual sitewide-subsurface conditions may differ – maybe significantly – from those indicated in this report. Confront that risk by retaining your geotechnical engineer to serve on the design team from project start to project finish, so the individual can provide informed guidance quickly, whenever needed.
This Report's Recommendations Are Confirmation-Dependent

The recommendations included in this report – including any options or alternatives – are confirmation-dependent. In other words, *they are not final*, because the geotechnical engineer who developed them relied heavily on judgment and opinion to do so. Your geotechnical engineer can finalize the recommendations *only after observing actual subsurface conditions* revealed during construction. If through observation your geotechnical engineer confirms that the conditions assumed to exist actually do exist, the recommendations can be relied upon, assuming no other changes have occurred. *The geotechnical engineer who prepared this report cannot assume responsibility or liability for confirmationdependent recommendations if you fail to retain that engineer to perform construction observation*.

This Report Could Be Misinterpreted

Other design professionals' misinterpretation of geotechnicalengineering reports has resulted in costly problems. Confront that risk by having your geotechnical engineer serve as a full-time member of the design team, to:

- confer with other design-team members,
- help develop specifications,
- review pertinent elements of other design professionals' plans and specifications, and
- be on hand quickly whenever geotechnical-engineering guidance is needed.

You should also confront the risk of constructors misinterpreting this report. Do so by retaining your geotechnical engineer to participate in prebid and preconstruction conferences and to perform construction observation.

Give Constructors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can shift unanticipated-subsurface-conditions liability to constructors by limiting the information they provide for bid preparation. To help prevent the costly, contentious problems this practice has caused, include the complete geotechnical-engineering report, along with any attachments or appendices, with your contract documents, *but be certain to note conspicuously that you've included the material for informational purposes only.* To avoid misunderstanding, you may also want to note that "informational purposes" means constructors have no right to rely on the interpretations, opinions, conclusions, or recommendations in the report, but they may rely on the factual data relative to the specific times, locations, and depths/elevations referenced. Be certain that constructors know they may learn about specific project requirements, including options selected from the report, *only* from the design drawings and specifications. Remind constructors that they may perform their own studies if they want to, and *be sure to allow enough time* to permit them to do so. Only then might you be in a position to give constructors the information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions. Conducting prebid and preconstruction conferences can also be valuable in this respect.

Read Responsibility Provisions Closely

Some client representatives, design professionals, and constructors do not realize that geotechnical engineering is far less exact than other engineering disciplines. That lack of understanding has nurtured unrealistic expectations that have resulted in disappointments, delays, cost overruns, claims, and disputes. To confront that risk, geotechnical engineers commonly include explanatory provisions in their reports. Sometimes labeled "limitations," many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely*. Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The personnel, equipment, and techniques used to perform an environmental study – e.g., a "phase-one" or "phase-two" environmental site assessment – differ significantly from those used to perform a geotechnical-engineering study. For that reason, a geotechnicalengineering report does not usually relate any environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated subsurface environmental problems have led to project failures*. If you have not yet obtained your own environmental information, ask your geotechnical consultant for risk-management guidance. As a general rule, *do not rely on an environmental report prepared for a different client, site, or project, or that is more than six months old.*

Obtain Professional Assistance to Deal with Moisture Infiltration and Mold

While your geotechnical engineer may have addressed groundwater, water infiltration, or similar issues in this report, none of the engineer's services were designed, conducted, or intended to prevent uncontrolled migration of moisture – including water vapor – from the soil through building slabs and walls and into the building interior, where it can cause mold growth and material-performance deficiencies. Accordingly, *proper implementation of the geotechnical engineer's recommendations will not of itself be sufficient to prevent moisture infiltration*. Confront the risk of moisture infiltration by including building-envelope or mold specialists on the design team. *Geotechnical engineers are not buildingenvelope or mold specialists*.

Telephone: 301/565-2733 e-mail: info@geoprofessional.org www.geoprofessional.org

Copyright 2016 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document or its wording as a complement to or as an element of a report of any kind. Any other firm, individual, or other entity that so uses this document without being a GBA member could be committing negligent

Map Saved as V:\Drafting\11693\001\Maps\11693-001_F01_SLM_2017-08-17.mxd on 8/7/2017 1:09:34 PM

Map Saved as P:\Drafting\11693\001\Maps\11693-001_F04_RGM_2017-08-10.mxd on 8/10/2017 3:34:28 PM

Map Saved as P:\Drafting\11693\001\Maps\11693-001_F05_RFSM_2017-08-11.mxd on 8/11/2017 11:18:13 AM

Map Saved as P:\Drafting\11693\001\Maps\11693-001_F06_SHM_2017-08-07.mxd on 8/7/2017 5:56:01 PM

Map Saved as P:\Drafting\11693\001\Maps\11693-001_F07_FHM_2017-08-07.mxd on 8/7/2017 1:47:58 PM

Map Saved as P:\Drafting\11693\001\Maps\11693-001_F08_DIM_2017-08-07.mxd on 8/7/2017 1:52:01 PM

SUBDRAIN OPTIONS AND BACKFILL WHEN NATIVE MATERIAL HAS EXPANSION INDEX OF >50

GENERAL NOTES:

* Waterproofing should be provided where moisture nuisance problem through the wall is undesirable.

* Water proofing of the walls is not under purview of the geotechnical engineer

* All drains should have a gradient of 1 percent minimum

*Outlet portion of the subdrain should have a 4-inch diameter solid pipe discharged into a suitable disposal area designed by the project engineer. The subdrain pipe should be accessible for maintenance (rodding)

*Other subdrain backfill options are subject to the review by the geotechnical engineer and modification of design parameters.

Notes:

1) Sand should have a sand equivalent of 30 or greater and may be densified by water jetting.

2) 1 Cu. ft. per ft. of 1/4- to 1 1/2-inch size gravel wrapped in filter fabric

3) Pipe type should be ASTM D1527 Acrylonitrile Butadiene Styrene (ABS) SDR35 or ASTM D1785 Polyvinyl Chloride plastic (PVC), Schedule 40, Armco A2000 PVC, or approved equivalent. Pipe should be installed with perforations down. Perforations should be 3/8 inch in diameter placed at the ends of a 120-degree arc in two rows at 3-inch on center (staggered)

4) Filter fabric should be Mirafi 140NC or approved equivalent.

5) Weephole should be 3-inch minimum diameter and provided at 10-foot maximum intervals. If exposure is permitted, weepholes should be located 12 inches above finished grade. If exposure is not permitted such as for a wall adjacent to a sidewalk/curb, a pipe under the sidewalk to be discharged through the curb face or equivalent should be provided. For a basement-type wall, a proper subdrain outlet system should be provided.

6) Retaining wall plans should be reviewed and approved by the geotechnical engineer.

7) Walls over six feet in height are subject to a special review by the geotechnical engineer and modifications to the above requirements.

APPENDIX A1

Boring Logs

Project No.	11693.001	Date Drilled	7-13-17
Project	Salinas Police HQ	Logged By	JMP
Drilling Co.	Woodward Drilling	Hole Diameter	8"
Drilling Method	Hollow Stem Auger - 140lb - Autohammer - 30" Drop	Ground Elevation	50'
Location		Sampled By	JMP

Elevation Feet	Depth Feet	z Graphic ۷	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION This Soil Description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	
50-	0— — —	54 - O t		BB-1 -	-			CL	 @Surface: 3-inches Asphalt Concrete over 6-inches Aggregate Base @0.75': <u>Artificial Fill, undocumented (Afu):</u> CLAY, dark gray brown, soft, moist, some orange oxidation 	MD,EI, CR,CN, DS,RV
45-	5 -			R1	5 6 8				Quaternary Alluvium (Qa): @4': CLAY, medium brown, soft, very moist @5': SILT, medium brown stiff, very moist, micaceous	DS
	_			S1	4 2 4			CL	@7.5': (Limited Recovery) CLAY, dark brown, medium stiff, moist, thinnly laminated	AL
40-	10— — —			R2	7 7 7			SM	@11': Silty SAND, bluish gray to medium brown, loose, very moist, fine sand, micaceous	DS, CN
35-	15— — —			S2	1 2 2		27		@15': Silty SAND, bluish gray to medium brown, loose, very moist to wet, fine sand, micaceous	
	_	$\cdot \cdot \cdot \cdot \cdot \cdot$		-	-				@18.9': perched groundwater encountered	
30-	20 			R3 -	5 6 8			CL	@20': CLAY, olive gray with orange oxidation, stiff, very moist	AL, CN
25-	25— — — —			S3	3 3 6		46		@25': CLAY, gray to olive gray with orange oxidation, stiff, very moist	
20 SAMF	30	ES:				SING		DIPECT		
B C G R S T	SAMPLE 1YPE OF TESTS: B BULK SAMPLE C CORE SAMPLE -200 % FINES PASSING DS DIRECT SHEAR SA SIEVE ANALYSIS C CORE SAMPLE AL ATTERBERG LIMITS EI EXPANSION INDEX SE SAND EQUIVALENT G GRAB SAMPLE CN CONSOLIDATION H HYDROMETER SG SPECIFIC GRAVITY R RING SAMPLE CO COLLAPSE MD MAXIMUM DENSITY UC UNCONFINED COMPRESSIVE STRENGTH S SPILT SPOON SAMPLE CR COROSION PP POCKET PENETROMETER T T TUBE SAMPLE CU UNDRAINED TRIAXIAL RV R VALUE									

			·	s	ty	%		SOIL DESCRIPTION		sts
Locatio	on							Sampled By	JMP	
Drilling	g Method	Hollow Stem Auger - 140lb - Autohammer - 30" Drop					er - 30" Drop Ground Elevation	50'		
Drilling	g Co.	Wood	ward Dril	ling				Hole Diameter	8"	
Project	t	Salina	as Police	HQ				Logged By	JMP	
Project	ct No.	11693	3.001					Date Drilled	7-13-17	

:levation Feet	Depth Feet	Graphic Log	Attitudes	ample No.	Blows r 6 Inches	y Density pcf	Moisture ontent, %	oil Class. U.S.C.S.)	SOIL DESCRIPTION This Soil Description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the	oe of Tests
		N S		ŭ	Ре	Ō	-0	S_)	actual conditions encountered. Transitions between soil types may be gradual.	Tyi
20-	30— — —			R4	3 5 7			CL	@30': CLAY, gray, medium stiff, very moist, with abundant black ash and burnt organic material, organic odor	AL, CN
15-	35 			S4	3 5 5		66		@35': CLAY, gray with interlayered black ash/organics, stiff, very moist, organic odor	
10-				R5	5 5 7				@40': CLAY, gray, medium stiff, very moist	AL, CN
5-				S5	3 4 5		65		@45': CLAY, gray with interlayered black ash/organics, stiff, very moist, organic odor	
0-				R6	5 6 11	70	53		@50': CLAY, gray, very stiff, very moist	
-5-	 55 				-				Total Depth of Boring: 51.5 feet bgs Perched groundwater at 18.9 feet bgs Boring backfilled with cement/bentonite grout via tremmie pipe on 7/13/17	
-10-	<u>60</u>									
SAMF B C G R S T	SAMPLE TYPES: TYPE OF TESTS: B BULK SAMPLE -200 % FINES PASSING DS DIRECT SHEAR SA SIEVE ANALYSIS C CORE SAMPLE AL ATTERBERG LIMITS EI EXPANSION INDEX SE SAND EQUIVALENT G GRAB SAMPLE CN CONSOLIDATION H HYDROMETER SG SPECIFIC GRAVITY R RING SAMPLE CO COLLAPSE MD MAXIMUM DENSITY UC UNCONFINED COMPRESSIVE STRENGTH S SPLIT SPOON SAMPLE CR CORROSION PP POCKET PENETROMETER T TUBE SAMPLE CU UNDRAINED TRIAXIAL RV R VALUE									

Pro	ject No	0.	11693	3.001					Date Drilled 7-13	-17
Proj	ect		Salina	as Police	HQ				Logaed By JMP	
Dril	ing Co	D.	Wood	lward Dr	illing				Hole Diameter 8"	
Drill	ing M	ethod	Hollov	w Stem	Auger -	140lb	- Auto	hamm	er - 30" Drop Ground Elevation 52'	
Loc	ation								Sampled By JMP	
Elevation Feet	Depth Feet	z Graphic v	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION This Soil Description applies only to a location of the exploration at time of sampling. Subsurface conditions may differ at other location and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may gradual.	the of Tests
50-	0 			BB-1				CL CL ML	 @Surface: Gravel <u>Artificial Fill, undocumented (Afu):</u> @0': Gravelly SAND (base material), light gray brown, dry to slightly moist @1': CLAY, dark brown, moist <u>Quaternary Alluvium (Qa):</u> @2': CLAY, medium brown, moist, micaceous 	/ MD,EI, CR,CN, DS,RV / /
45-	5— — — —			R1 S1	9 12 15 5 6 7	92	23 18	CL SM	 @5': Silty CLAY, medium olive brown, very stiff, moist, micaceous @8': Silty SAND, medium yellow brown, medium dense, slightly moist to moist 	
40-	10— — —			R2	8 9 9					CN
35-				R3	6 4 5	93	25		@15': Loose	
30-				S2	2 4 5		40	ML-CL	@19': perched groundwater encountered @20': Clayey SILT to Silty CLAY with sand, blue gray, stiff, wet	
25-				R4	10 20 22	105	4	SM/SP	@25': Silty SAND to SAND, light yellow brown, medium dense, slightly moist to moist, fine to medium sand	
SAMI B C G R S T	30 DLE TYP BULK S CORE S GRAB S RING S SPLIT S TUBE S	ES: SAMPLE SAMPLE SAMPLE SAMPLE AMPLE SPOON SA SAMPLE	MPLE	TYPE OF 1 -200 % I AL AT CN CC CO CC CR CC CU UN	ESTS: FINES PAS TERBERG INSOLIDA DILAPSE PROSION DRAINED	SSING LIMITS TION TRIAXIA	DS EI H MD PP	DIRECT EXPANS HYDRO MAXIMU POCKE R VALU	SHEAR SA SIEVE ANALYSIS SION INDEX SE SAND EQUIVALENT METER SG SPECIFIC GRAVITY JM DENSITY UC UNCONFINED COMPRESSIVE STRENGTH T PENETROMETER E	

Pro	ject No	o.	11693	3.001					Date Drilled	7-13-17	
Proj	ect	-	Salina	as Police	e HQ				Logged By	JMP	
Drill	ing Co	D.	Wood	ward D	rilling				Hole Diameter	8"	
Drill	ing Mo	ethod	Hollo	w Stem	Auger -	140lb	- Auto	hamm	er - 30" Drop Ground Elevation	52'	
Loc	ation	-							Sampled By	_JMP	
Elevation Feet	Depth Feet	z Graphic ۷	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION This Soil Description applies only to a location of the explore time of sampling. Subsurface conditions may differ at other and may change with time. The description is a simplification actual conditions encountered. Transitions between soil typ gradual.	ation at the locations on of the bes may be	Type of Tests
20-	30 — — —			S3	10 17 22		18	SW	@30': Gravelly Silty SAND, light yellow brown, dense, mo to coarse sand, fine subangular gravels, interbedded layer at top of sample	oist, fine clay	
15-	35 — _ _			R5	23 35 50/5	103	4	SM	@35': Silty SAND, light yellow brown, very dense, slightly to moist, fine sand	y moist	
10-				S4	14 25 35		8	SP	@40': SAND, light yellow brown, very dense, slightly moi to medium sand, trace coarse sand	st, fine	
5-				R6	21 50/6	95	13	SW	@45': Gravelly SAND with Clay, light yellow brown, very moist, medium to coarse sand, fine gravels, pockets o	dense, of clay	
0-	50 — 	· · · · · · · · · · · · · · · · · · ·		S5	17 28 30		6	SP	 @50': SAND, light yellow brown, very dense, slightly moi to medium sand Total Depth of Boring: 51.5 feet bgs Perched groundwater at 19 feet bgs Boring backfilled with cement/bentonite grout via tremmie on 7/13/17 	st, fine	
-5-	55 — — — —										
SAME				TYPE OF	TESTS:	SSINC	חפ	DIPECT			
В С G R S T	GRAB S GRAB S RING S SPLIT S TUBE S	SAMPLE SAMPLE SAMPLE AMPLE SPOON SA SAMPLE	MPLE	-200 % AL A1 CN CC CO CC CR CC CU UN	TERBERO DNSOLIDA DLLAPSE DRROSION NDRAINED		EI H MD PP	EXPAN EXPAN HYDRO MAXIM POCKE R VALU	I STIEAR SA SIEVE ANALTSIS SION INDEX SE SAND EQUIVALENT IMETER SG SPECIFIC GRAVITY UM DENSITY UC UNCONFINED COMPRESSIVE STRENG T PENETROMETER JE	тн	

Proj Proj Drill Drill Loca	ject No ect ing Co ing Me ation	o. o. ethod	11693 Salina Wood Holloy	3.001 as Police dward Dri w Stem A	HQ Illing Auger -	140lb	- Auto	hamm	Date Drilled7-13-17Logged ByJMPHole Diameter8"er - 30" DropGround ElevationSampled ByJMP	
Elevation Feet	Depth Feet	ح Graphic ە	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION This Soil Description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests
50-	0			BB-1	- - -			CL	 @Surface: 3-inches of Asphalt Concrete over 7-inches of Aggregate Base @0.8': CLAY, dark brown, moist Quaternary Alluvium (Qa): @2': CLAY, medium brown, moist @3': SILT, medium brown, moist 	
4 5-	5— — — —			S1 S2 S3	4 4 3 3 5 3 4		19 27 33	ML ML-CL CL	 @5': SILT, medium brown, medium stiff to stiff, moist @7': same as above with interlayered Silty CLAY, dark brown, medium stiff to stiff, moist @8.5': CLAY, medium brown, stiff, moist to very moist 	
40-	10 				- - -				Total Depth of Boring: 10 feet bgs Boring installed with a temporary percolation well Screened (0.020-inches) from 5-10 feet bgs and annulus filled with #3 Monterey Sand from 4.5-10 feet bgs Pipe removed from well and boring backfilled with cuttings upon completion of percolation test 7/14/17	
35-	15— — — —			-	-					
30-	20			-	-					
25-				-	-					
SAMF B C G R S T	EULK S BULK S CORE S GRAB S RING S SPLIT S TUBE S	ES: AMPLE SAMPLE SAMPLE AMPLE SPOON SA AMPLE	MPLE	TYPE OF T -200 % F AL AT CN CO CO CO CR CO CU UN	ESTS: INES PAS IERBERG NSOLIDAT LLAPSE RROSION DRAINED	SING LIMITS FION TRIAXIA	DS EI H MD PP L RV	DIRECT EXPAN HYDRO MAXIMI POCKE R VALU	SHEAR SA SIEVE ANALYSIS SION INDEX SE SAND EQUIVALENT METER SG SPECIFIC GRAVITY JM DENSITY UC UNCONFINED COMPRESSIVE STRENGTH T PENETROMETER IE	S

CO COLLAPSE CR CORROSION CU UNDRAINED TRIAXIAL *** This log is a part of a report by Leighton and should not be used as a stand-alone document. ***

APPENDIX A2 CPT Plots and Data

GEO TESTING INC.	Project Job Number	Salinas Police HQ 11693.001	_ Operator Cone Number	RB KK DDG1333	Filename GPS	SDF(107).cpt
	Hole Number	CPT-01	Date and Time	7/14/2017 1:03:27 PM	Maximum Depth	50.69 ft
	EST GW Depth Du	Iring Test	15.00 ft		·	

GEO TESTING INC.	Project Job Number	Salinas Police HQ 11693.001	_ Operator Cone Number	RB KK DDG1333	Filename GPS	SDF(108).cpt
	Hole Number	CPT-02	Date and Time	7/14/2017 1:38:33 PM	Maximum Depth	50.52 ft
	EST GW Depth Du	uring Test	15.00 ft		· · · · ·	

Iliddle Earth	Project	Salinas Police HQ	Operator	RB KK	Filename	SDF(105).cpt
GEO TESTING INC.	Job Number	11693.001	Cone Number	DDG1333	GPS	
	Hole Number	CPT-03	Date and Time	7/14/2017 11:42:09 AM	Maximum Depth	51.34 ft
	EST GW Depth Du	uring Test	15.00 ft		·	

GEO TESTING INC.	Project Job Number	Salinas Police HQ 11693.001	Operator Cone Number	RB KK DDG1333	Filename GPS	SDF(109).cpt
	Hole Number	CPT-04	Date and Time	7/14/2017 2:17:46 PM	Maximum Depth	50.36 ft
	EST GW Depth Du	uring Test	15.00 ft		·	

GEO TESTING INC.	Project Job Number	Salinas Police HQ 11693.001	_ Operator Cone Number	RB KK DDG1333	Filename GPS	SDF(106).cpt
	Hole Number	CPT-05	Date and Time	7/14/2017 12:21:38 PM	Maximum Depth	50.03 ft
	EST GW Depth D	uring Test	15.00 ft		·	

lliddle Earth	Project	Salinas Police HQ	Operator	RB KK	Filename	SDF(102).cpt
GED TESTING INC.	Job Number	11693.001	Cone Number	DDG1333	GPS	
	Hole Number	CPT-06	Date and Time	7/14/2017 9:42:00 AM	Maximum Depth	42.32 ft
	EST GW Depth D	uring Test	15.00 ft			

lliddle Fann	Project	Salinas Police HQ	Operator	RB KK	Filename	SDF(101).cpt
GEO TESTING INC.	Job Number	11693.001	Cone Number	DDG1333	GPS	
	Hole Number	CPT-07	Date and Time	7/14/2017 8:54:43 AM	Maximum Depth	50.52 ft
	EST GW Depth Du	uring Test	15.00 ft			

illiddle Earth	Project	Salinas Police HQ	Operator	RB KK	Filename	SDF(104).cpt
GED TESTING INC.	Job Number	11693.001	Cone Number	DDG1333	GPS	
	Hole Number	CPT-08	Date and Time	7/14/2017 10:48:34 AM	Maximum Depth	50.52 ft
	EST GW Depth D	uring Test	15.00 ft		·	

lliddle Earth	Project	Salinas Police HQ	Operator	RB KK	Filename	SDF(103).cpt
GEO TESTING INC.	Job Number	11693.001	Cone Number	DDG1333	GPS	
	Hole Number	CPT-09	Date and Time	7/14/2017 10:14:47 AM	Maximum Depth	50.52 ft
	EST GW Depth D	uring Test	15.00 ft			

liddle Earth	Project	Salinas Police HQ	Operator	RB KK	Filename	SDF(100).cpt
GEO TESTING INC.	Job Number	11693.001	Cone Number	DDG1333	GPS	
	Hole Number	CPT-10	Date and Time	7/14/2017 8:09:25 AM	Maximum Depth	50.85 ft
	EST GW Depth D	uring Test	15.00 ft			

APPENDIX B

Laboratory Test Results

ASTM D 4318

Project Name:	City of Salinas Public Safety Center	Tested By:	R. Manning	Date:	07/31/17
Project No. :	11693.001	Input By:	J. Ward	Date:	08/11/17
Boring No.:	LB-1	Checked By:	J. Ward		
Sample No.:	S1	Depth (ft.)	7.5		
	Versi destri succi fet elevi (CU)				

Soil Identification: Very dark gray fat clay (CH)

TEST	PLAST	FIC LIMIT		LIC	UID LIMIT	
NO.	1	2	1	2	3	4
Number of Blows [N]			33	26	15	
Wet Wt. of Soil + Cont. (g)	13.83	13.37	20.86	22.15	23.71	
Dry Wt. of Soil + Cont. (g)	12.34	11.98	18.39	19.24	20.13	
Wt. of Container (g)	7.05	6.99	13.51	13.62	13.56	
Moisture Content (%) [Wn]	28.17	27.86	50.61	51.78	54.49	

One - Point Liquid Limit Calculation LL =Wn(N/25)^{0.121}

PROCEDURES USED

Number of Blows

ASTM D 4318

Project Name:	City of Salinas Public Safety Center	Tested By:	R. Manning	Date:	08/04/17
Project No. :	11693.001	Input By:	J. Ward	Date:	08/11/17
Boring No.:	LB-1	Checked By:	J. Ward		
Sample No.:	R3	Depth (ft.)	20.0		
Soil Identification:	Dark olive brown lean clay (CL)				

TEST PLASTIC LIMIT LIQUID LIMIT NO. 2 1 1 2 3 4 Number of Blows [N] 34 24 21 Wet Wt. of Soil + Cont. (g) 12.50 21.90 13.37 21.85 19.51 Dry Wt. of Soil + Cont. (g) 12.20 11.36 19.37 17.10 19.28 Wt. of Container 7.04 6.21 13.56 11.74 13.53 (g) Moisture Content (%) [Wn] 22.67 22.14 42.69 44.96 45.57

18.25

One - Point Liquid Limit Calculation $LL = Wn(N/25)^{0.121}$

PROCEDURES USED

X

Χ

ASTM D 4318

Project Name:	City of Salinas Public Safety Center	Tested By:	R. Manning	Date:	08/07/17
Project No. :	11693.001	Input By:	J. Ward	Date:	08/11/17
Boring No.:	LB-1	Checked By:	J. Ward		
Sample No.:	R4	Depth (ft.)	30.0		

Soil Identification: Very dark gray fat clay (CH)

TEST	PLAST	IC LIMIT		LIC	UID LIMIT	
NO.	1	2	1	2	3	4
Number of Blows [N]			35	26	21	
Wet Wt. of Soil + Cont. (g)	13.69	13.37	21.50	21.76	21.64	
Dry Wt. of Soil + Cont. (g)	11.93	11.68	17.78	17.80	17.73	
Wt. of Container (g)	7.05	6.99	13.62	13.56	13.65	
Moisture Content (%) [Wn]	36.07	36.03	89.42	93.40	95.83	

54.02

One - Point Liquid Limit Calculation $LL = Wn(N/25)^{0.121}$

PI at "A" - Line = 0.73(LL-20)

PROCEDURES USED

ASTM D 4318

Project Name:	City of Salinas Public Safety Center	Tested By:	R. Manning	Date:	08/07/17
Project No. :	11693.001	Input By:	J. Ward	Date:	08/11/17
Boring No.:	LB-1	Checked By:	J. Ward		
Sample No.:	R5	Depth (ft.)	40.0		
	Deale allow among fat along (OU)				

Soil Identification: Dark olive gray fat clay (CH)

TEST	PLAST	IC LIMIT		LIQ	UID LIMIT	
NO.	1	2	1	2	3	4
Number of Blows [N]			35	25	20	
Wet Wt. of Soil + Cont. (g)	13.09	12.93	21.26	21.46	22.85	
Dry Wt. of Soil + Cont. (g)	11.72	11.45	17.66	17.69	18.30	
Wt. of Container (g)	7.05	6.21	13.59	13.63	13.52	
Moisture Content (%) [Wn]	29.34	28.24	88.45	92.86	95.19	

53.29

One - Point Liquid Limit Calculation $LL = Wn(N/25)^{0.121}$

PI at "A" - Line = 0.73(LL-20)

PROCEDURES USED

Final Vertical Reading (in.)

Specific Gravity (assumed):

Water Density (pcf):

ONE-DIMENSIONAL CONSOLIDATION PROPERTIES of SOILS ASTM D 2435

Project Name: City of	Salinas Publ	ic Safety Center	Tested By: G. Bath	nala Date: 08/02/17
Project No.: 11693.	001		Checked By: J. Wa	rd Date: 08/11/17
Boring No.: LB-1		-	Depth (ft.): 0-5	
Sample No.: BB-1		_	Sample Type:	90% Remold
Soil Identification: Dark o	live gray fat	clay (CH)		
		- 0.880		
Sample Diameter (in.):	2.415	0.000		
Sample Thickness (in.):	1.000			
Weight of Sample + ring (g):	174.03	0.860		
Weight of Ring (g):	43.45			ndata with
Height after consol. (in.):	0.9889	0.840	Т	ap water
Before Test		-		
Wt. of Wet Sample+Cont. (g): 169.59	0.820		
Wt. of Dry Sample+Cont. (g)	: 152.79			
Weight of Container (g):	59.19	<u>.</u> 0.800		
Initial Moisture Content (%)	17.9	Sat		
Initial Dry Density (pcf)	92.1	0.780		
Initial Saturation (%):	58		\sim $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	
Initial Vertical Reading (in.)	0.1825	0.760		
After Test		-		
Wt. of Wet Sample+Cont. (g): 262.26	0.740		
Wt. of Dry Sample+Cont. (g)	: 231.08	-		
Weight of Container (g):	76.60	0.720		
Final Moisture Content (%)	28.08			
Final Dry Density (pcf):	93.4	0.700		→
Final Saturation (%):	94	-		

0.680

0.10

0.1939

2.70

62.43

Pressure, p (kst)

10.00

1.00

Pressure (p) (ksf)	Final Reading (in.)	Apparent Thickness (in.)	Load Compliance (%)	Deformation % of Sample Thickness	Void Ratio	Corrected Deforma- tion (%)	Time Readings @ 4 ksf				
							Date	Time	Elapsed Time (min)	Square Root of Time	Dial Rdgs. (in.)
0.10	0.1824	1.0001	0.00	-0.01	0.831	-0.01	8/5/17	5:54:00	0.0	0.0	0.1618
0.25	0.1842	0.9983	0.01	0.17	0.828	0.16	8/5/17	5:54:06	0.1	0.3	0.1663
0.50	0.1861	0.9964	0.02	0.36	0.825	0.34	8/5/17	5:54:15	0.2	0.5	0.1670
1.00	0.1895	0.9931	0.04	0.70	0.819	0.66	8/5/17	5:54:30	0.5	0.7	0.1677
2.00	0.1926	0.9899	0.05	1.01	0.813	0.96	8/5/17	5:55:00	1.0	1.0	0.1684
2.00	0.1618	1.0208	0.05	-2.08	0.870	-2.13	8/5/17	5:56:00	2.0	1.4	0.1693
4.00	0.1775	1.0050	0.09	-0.50	0.842	-0.59	8/5/17	5:58:00	4.0	2.0	0.1702
8.00	0.2135	0.9690	0.13	3.10	0.776	2.97	8/5/17	6:02:00	8.0	2.8	0.1712
16.00	0.2563	0.9262	0.21	7.38	0.699	7.17	8/5/17	6:09:00	15.0	3.9	0.1721
4.00	0.2405	0.9420	0.11	5.80	0.727	5.69	8/5/17	6:24:00	30.0	5.5	0.1731
1.00	0.2166	0.9659	0.06	3.41	0.769	3.35	8/5/17	6:54:00	60.0	7.7	0.1741
0.25	0.1939	0.9886	0.03	1.14	0.810	1.11	8/5/17	7:54:00	120.0	11.0	0.1751
							8/5/17	9:54:00	240.0	15.5	0.1759
							8/5/17	14:10:00	496.0	22.3	0.1767
							8/6/17	6:40:00	1486.0	38.5	0.1775

100.

Project Name:	City of Salinas Public Safety Center	Tested By: G. Bathala	Date:	08/03/17
Project No.:	11693.001	Checked By: J. Ward	Date:	08/11/17
Boring No.:	<u>LB-1</u>	Depth (ft.): <u>10.0</u>		
Sample No.:	R2	Sample Type:	Ring	
Soil Identification:	Dark olive gray silty clay (CL-ML)			

Sample Diameter (in.):	2.415			
Sample Thickness (in.):	1.000			
Weight of Sample + ring (g):	184.57			
Weight of Ring (g):	43.34			
Height after consol. (in.):	0.9444			
Before Test				
Wt. of Wet Sample+Cont. (g):	146.44			
Wt. of Dry Sample+Cont. (g):	133.44			
Weight of Container (g):	67.95			
Initial Moisture Content (%)	19.9			
Initial Dry Density (pcf)	98.0			
Initial Saturation (%):	74			
Initial Vertical Reading (in.)	0.1495			
After Test				
Wt. of Wet Sample+Cont. (g):	259.44			
Wt. of Dry Sample+Cont. (g):	231.28			
Weight of Container (g):	77.30			
Final Moisture Content (%)	25.45			
Final Dry Density (pcf):	97.4			
Final Saturation (%):	94			
Final Vertical Reading (in.)	0.2106			
Specific Gravity (assumed):	2.70			
Water Density (pcf):	62.43			

Pressure Final (p) Reading		Apparent	Load Compliance	Load Compliance	Deformation	Void	Corrected		Time F	Readings @	eadings @ 2 ksf		
(p) (ksf)	(in.)	(in.)	(%)	% of Sample Thickness	Ratio	tion (%)	Date	Time	Elapsed Time (min)	Square Root of Time	Dial Rdgs. (in.)		
0.10	0.1490	1.0005	0.00	-0.05	0.721	-0.05	8/5/17	5:37:00	0.0	0.0	0.1603		
0.25	0.1512	0.9983	0.09	0.17	0.719	0.08	8/5/17	5:37:06	0.1	0.3	0.1628		
0.50	0.1544	0.9951	0.19	0.49	0.715	0.30	8/5/17	5:37:15	0.2	0.5	0.1633		
1.00	0.1601	0.9895	0.34	1.06	0.708	0.72	8/5/17	5:37:30	0.5	0.7	0.1637		
1.00	0.1603	0.9892	0.34	1.08	0.707	0.74	8/5/17	5:38:00	1.0	1.0	0.1642		
2.00	0.1715	0.9780	0.49	2.20	0.691	1.71	8/5/17	5:39:00	2.0	1.4	0.1648		
4.00	0.1907	0.9588	0.63	4.12	0.660	3.49	8/5/17	5:41:00	4.0	2.0	0.1655		
8.00	0.2168	0.9327	0.75	6.73	0.617	5.98	8/5/17	5:45:00	8.0	2.8	0.1661		
16.00	0.2505	0.8990	0.89	10.10	0.562	9.21	8/5/17	5:52:00	15.0	3.9	0.1668		
4.00	0.2409	0.9086	0.75	9.14	0.576	8.39	8/5/17	6:07:00	30.0	5.5	0.1677		
1.00	0.2246	0.9250	0.63	7.51	0.602	6.88	8/5/17	6:37:00	60.0	7.7	0.1686		
0.25	0.2106	0.9390	0.54	6.11	0.624	5.57	8/5/17	7:37:00	120.0	11.0	0.1695		
							8/5/17	9:37:00	240.0	15.5	0.1701		
							8/5/17	14:08:00	511.0	22.6	0.1708		
							8/6/17	6:37:00	1500.0	38.7	0.1715		

Project Name	City of Salinas Public Safety Center	Tested By: G Bathala	Date:	08/03/17
		Tested by. O. Datrial		00/03/17
Project No.:	11693.001	Checked By: J. Ward	_ Date: _	08/11/17
Boring No.:	<u>LB-1</u>	Depth (ft.): 20.0		
Sample No.:	<u>R3</u>	Sample Type:	Ring	
Soil Identification:	Dark olive brown lean clay (CL)			

Pressure	Final Apparent Load Deformation Reading Thickness Compliance % of Sample		nation Sample	Corrected	Time Readings @ 2 ksf							
(p) (ksf)	(in.)	(in.)	(%)	% of Sample Thickness	Ratio	Ratio Deforma- tion (%)		Time	Elapsed Time (min)	Square Root of Time	Dial Rdgs. (in.)	
0.10	0.0982	1.0002	0.00	-0.02	1.146	-0.02	8/5/17	6:04:00	0.0	0.0	0.1119	
0.25	0.1014	0.9970	0.01	0.30	1.140	0.29	8/5/17	6:04:06	0.1	0.3	0.1131	
0.50	0.1062	0.9923	0.03	0.78	1.130	0.75	8/5/17	6:04:15	0.2	0.5	0.1135	
1.00	0.1119	0.9865	0.06	1.35	1.118	1.29	8/5/17	6:04:30	0.5	0.7	0.1139	
1.00	0.1119	0.9866	0.06	1.35	1.118	1.29	8/5/17	6:05:00	1.0	1.0	0.1144	
2.00	0.1222	0.9762	0.11	2.38	1.097	2.27	8/5/17	6:06:00	2.0	1.4	0.1152	
4.00	0.1381	0.9603	0.20	3.97	1.065	3.77	8/5/17	6:08:00	4.0	2.0	0.1162	
8.00	0.1655	0.9329	0.28	6.71	1.008	6.43	8/5/17	6:12:00	8.0	2.8	0.1175	
16.00	0.2086	0.8899	0.38	11.02	0.918	10.64	8/5/17	6:19:00	15.0	3.9	0.1187	
4.00	0.1910	0.9074	0.26	9.26	0.953	9.00	8/5/17	6:34:00	30.0	5.5	0.1197	
1.00	0.1738	0.9246	0.18	7.54	0.988	7.36	8/5/17	7:04:00	60.0	7.7	0.1204	
0.25	0.1541	0.9443	0.14	5.57	1.029	5.43	8/5/17	8:04:00	120.0	11.0	0.1209	
							8/5/17	10:04:00	240.0	15.5	0.1213	
							8/5/17	14:11:00	487.0	22.1	0.1217	
							8/6/17	6:43:00	1479.0	38.5	0.1222	

Project Name:	City of Sa	alinas Publi	ic Safety Ce	nter			Tested	By:	G. Ba	thala	Date:	08/	/01/17
Project No .:	11693.00)1	_				Checke	d By:	J. W	/ard	Date:	08,	/11/17
Boring No.:	LB-1						Depth	(ft.):	30.0)			
Sample No.:	R4						Samp	le Тур	e:		Ring		
Soil Identification:	Very dark	k gray fat d	clay (CH)							_			
Sample Diameter (in.):	2.415	2.000										
Sample Thickness (in	.):	1.000							l In	undate	with		
Weight of Sample +	ring (g):	151.58	1 000							Tap wa	ter		
Weight of Ring (g):		43.36	1.500										
Height after consol. ((in.):	0.8718	-										
Before Test			1.800 -										
Wt. of Wet Sample+0	Cont. (g):	288.86											
Wt. of Dry Sample+C	Cont. (g):	196.99	-										
Weight of Container	(g):	38.49	.2 1.700					-					
Initial Moisture Conte	ent (%)	58.0	Sat										
Initial Dry Density (p	cf)	57.0	<u>o</u>						$\backslash $				
Initial Saturation (%)	:	80	9 1.600						$ \rangle $				
Initial Vertical Readin	ıg (in.)	0.1623											
After Test		1	-		\mathbb{H}								
Wt. of Wet Sample+0	Cont. (g):	224.58	1.500 -						++++	-			
Wt. of Dry Sample+C	Cont. (g):	182.57	-							\mathbf{N}			
Weight of Container	(g):	80.27								$ \rangle$			
Final Moisture Conter	nt (%)	71.28	1.400 -						\blacksquare	+			
Final Dry Density (po	cf):	56.2	-							\sim			
Final Saturation (%):		96	-										
Final Vertical Reading	g (in.)	0.2914	1.300 -	0	<u> </u>	1 00			40				100
Specific Gravity (assu	imed):	2.70	0.1	U		Droe	seuro	n (k	ונ sf)	0.00			100
Water Density (pcf):		62.43				1163	Soure	, μ (κ	51)				

Pressure	re Final Apparent Load Deformatio Reading Thickness Compliance % of Sampl		Deformation % of Sample		Corrected	Time Readings @ 4 ksf							
(p) (ksf)	(in.)	(in.)	(%)	Thickness	Ratio	tion (%)		Time	Elapsed Time (min)	Square Root of Time	Dial Rdgs. (in.)		
0.10	0.1620	1.0003	0.00	-0.03	1.959	-0.03	8/4/17	7:45:00	0.0	0.0	0.1986		
0.25	0.1666	0.9957	0.01	0.43	1.946	0.42	8/4/17	7:45:06	0.1	0.3	0.2038		
0.50	0.1703	0.9920	0.05	0.80	1.936	0.75	8/4/17	7:45:15	0.2	0.5	0.2054		
1.00	0.1793	0.9830	0.08	1.70	1.910	1.62	8/4/17	7:45:30	0.5	0.7	0.2065		
2.00	0.1981	0.9643	0.13	3.57	1.856	3.44	8/4/17	7:46:00	1.0	1.0	0.2078		
2.00	0.1986	0.9637	0.13	3.63	1.855	3.50	8/4/17	7:47:00	2.0	1.4	0.2097		
4.00	0.2335	0.9288	0.21	7.12	1.754	6.91	8/4/17	7:49:00	4.0	2.0	0.2120		
8.00	0.2979	0.8644	0.33	13.56	1.567	13.23	8/4/17	7:53:00	8.0	2.8	0.2151		
16.00	0.3733	0.7890	0.52	21.10	1.350	20.58	8/4/17	8:00:00	15.0	3.9	0.2180		
4.00	0.3489	0.8134	0.25	18.66	1.414	18.41	8/4/17	8:15:00	30.0	5.5	0.2211		
1.00	0.3162	0.8461	0.14	15.39	1.507	15.25	8/4/17	8:45:00	60.0	7.7	0.2239		
0.25	0.2914	0.8710	0.08	12.91	1.579	12.83	8/4/17	9:45:00	120.0	11.0	0.2262		
							8/4/17	11:45:00	240.0	15.5	0.2284		
							8/4/17	15:45:00	480.0	21.9	0.2307		
							8/5/17	9:35:00	1550.0	39.4	0.2335		

Project Name:	City of Sa	alinas Publi	c Sa	afety Center				Tested	d By:	G.	Batha	la Dat	e: <u>C</u>) <mark>8/0</mark> ′	1/17
Project No .:	11693.00)1						Checke	ed By:	J	War	d Dat	e: C)8/1 ⁻	1/17
Boring No.:	LB-1							Depth	(ft.):	4	0.0				
Sample No.:	R5							Samp	le Ty	pe:		Ring	<u> </u>		
Soil Identification:	Dark oliv	e gray fat o	clay	(CH)											
Sample Diameter (in	.):	2.415		2.100											
Sample Thickness (ir	า.):	1.000		-											
Weight of Sample +	ring (g):	168.78		2.000	-										
Weight of Ring (g):		43.99		-											
Height after consol.	(in.):	0.8592		1.900	_										
Before Test				-								\frown		$ \rightarrow $	
Wt. of Wet Sample+	Cont. (g):	271.45		1.800	_							Inunc Tac	late with water	ו	
Wt. of Dry Sample+0	Cont. (g):	178.31												\neg	
Weight of Container	(g):	39.31	.0	1 700					N.,	K	11				
Initial Moisture Conte	ent (%)	67.0	Rat	1.700											
Initial Dry Density (p	ocf)	62.1	l b	-											
Initial Saturation (%)):	100	No	1.600											
Initial Vertical Readir	ng (in.)	0.1276		-											
After Test				1.500							₹				
Wt. of Wet Sample+	Cont. (g):	233.64		-							IN				
Wt. of Dry Sample+0	Cont. (g):	197.34		1.400							$\parallel \Lambda$				
Weight of Container	(g):	75.01		-							`				
Final Moisture Conte	nt (%)	46.34		1 000							₩-	\mathcal{T}			
Final Dry Density (p	ocf):	75.8		1.300											
Final Saturation (%)	:	95		-											
Final Vertical Reading	g (in.)	0.2690		1.200			1 00				10.00	<u> </u>			
Specific Gravity (assu	umed):	2.96		0.10			1.00 Dra	seuro	n (kef)	10.00	1			100.
Water Density (pcf):		62.43					FIC	.33ui 6	., P (N31)					

Pressure	re Final Apparent Load Deformatio Reading Thickness Compliance % of Samp		Deformation	Deformation % of Sample	Corrected		Time F	Readings @	8 ksf		
(p) (ksf)	(in.)	(in.)	(%)	% of Sample Thickness	Ratio	tion (%)	Date	Time	Elapsed Time (min)	Square Root of Time	Dial Rdgs. (in.)
0.10	0.1279	0.9997	0.00	0.03	1.973	0.03	8/5/17	5:41:00	0.0	0.0	0.2184
0.25	0.1325	0.9952	0.01	0.49	1.960	0.48	8/5/17	5:41:06	0.1	0.3	0.2218
0.50	0.1379	0.9897	0.02	1.03	1.944	1.01	8/5/17	5:41:15	0.2	0.5	0.2228
1.00	0.1492	0.9784	0.03	2.16	1.910	2.13	8/5/17	5:41:30	0.5	0.7	0.2242
2.00	0.1727	0.9549	0.06	4.51	1.841	4.45	8/5/17	5:42:00	1.0	1.0	0.2263
4.00	0.2177	0.9100	0.10	9.01	1.709	8.91	8/5/17	5:43:00	2.0	1.4	0.2292
4.00	0.2184	0.9092	0.10	9.08	1.707	8.98	8/5/17	5:45:00	4.0	2.0	0.2335
8.00	0.2848	0.8428	0.15	15.72	1.511	15.57	8/5/17	5:49:00	8.0	2.8	0.2399
16.00	0.3559	0.7717	0.22	22.83	1.301	22.61	8/5/17	5:56:00	15.0	3.9	0.2477
4.00	0.3332	0.7944	0.14	20.56	1.366	20.42	8/5/17	6:11:00	30.0	5.5	0.2576
1.00	0.2999	0.8277	0.08	17.23	1.464	17.15	8/5/17	6:41:00	60.0	7.7	0.2670
0.25	0.2690	0.8587	0.05	14.14	1.555	14.09	8/5/17	7:41:00	120.0	11.0	0.2732
							8/5/17	9:41:00	240.0	15.5	0.2776
							8/5/17	14:09:00	508.0	22.5	0.2813
							8/6/17	6:38:00	1497.0	38.7	0.2848

Project Name:	City of Sa	ilinas Publi	c Safety Center		Tested By:	G. Bathala	Date:	08/02/17
Project No.:	11693.00	1			Checked By	J. Ward	Date:	08/11/17
Boring No.:	_B-2				Depth (ft.)	: 0-5		
Sample No.:	3B-1				Sample T	ype:	90% R	emold
Soil Identification:	Olive bro	wn lean cla	ay (CL)					
			0.660 -	 				
Sample Diameter (in.)	:	2.415						
Sample Thickness (in.)):	1.000	-					
Weight of Sample + ri	ing (g):	184.62	-					
Weight of Ring (g):		43.50	0.640		+ + +			
Height after consol. (in	n.):	0.9985	1			Tap v	vater	
Before Test			-					
Wt. of Wet Sample+C	ont. (g):	179.89	0.620			N		
Wt. of Dry Sample+Co	ont. (g):	165.94		\mathbf{X}		N		
Woight of Container (~).	60 10				N		

Weight of Sample + ring (g):	184.62
Weight of Ring (g):	43.50
Height after consol. (in.):	0.9985
Before Test	
Wt. of Wet Sample+Cont. (g):	179.89
Wt. of Dry Sample+Cont. (g):	165.94
Weight of Container (g):	68.49
Initial Moisture Content (%)	14.3
Initial Dry Density (pcf)	102.7
Initial Saturation (%):	60
Initial Vertical Reading (in.)	0.1518
After Test	
Wt. of Wet Sample+Cont. (g):	240.22
Wt. of Dry Sample+Cont. (g):	211.67
Weight of Container (g):	45.0 <mark>9</mark>
Final Moisture Content (%)	23.20
Final Dry Density (pcf):	102.5
Final Saturation (%):	97
Final Vertical Reading (in.)	0.1550
Specific Gravity (assumed):	2.70
Water Density (pcf):	62.43

Pressure Final (p) Reading		Apparent ng Thickness Cor	Load Compliance	Deformation	Void	Corrected		Time F	Readings @	4 ksf	
(p) (ksf)	(in.)	(in.)	(%)	% of Sample Thickness	Ratio	tion (%)	Date	Time	Elapsed Time (min)	Square Root of Time	Dial Rdgs. (in.)
0.10	0.1522	0.9997	0.00	0.04	0.641	0.04	8/5/17	5:59:00	0.0	0.0	0.1505
0.25	0.1555	0.9964	0.02	0.37	0.636	0.35	8/5/17	5:59:06	0.1	0.3	0.1539
0.50	0.1585	0.9933	0.05	0.67	0.632	0.62	8/5/17	5:59:15	0.2	0.5	0.1542
1.00	0.1624	0.9894	0.10	1.06	0.626	0.96	8/5/17	5:59:30	0.5	0.7	0.1545
2.00	0.1661	0.9857	0.16	1.43	0.621	1.27	8/5/17	6:00:00	1.0	1.0	0.1549
2.00	0.1505	1.0013	0.16	-0.13	0.647	-0.29	8/5/17	6:01:00	2.0	1.4	0.1553
4.00	0.1587	0.9931	0.23	0.69	0.634	0.46	8/5/17	6:03:00	4.0	2.0	0.1556
8.00	0.1754	0.9764	0.31	2.36	0.608	2.05	8/5/17	6:07:00	8.0	2.8	0.1560
16.00	0.2098	0.9420	0.40	5.80	0.553	5.40	8/5/17	6:14:00	15.0	3.9	0.1564
4.00	0.2001	0.9518	0.30	4.83	0.568	4.53	8/5/17	6:29:00	30.0	5.5	0.1568
1.00	0.1831	0.9687	0.23	3.13	0.594	2.90	8/5/17	6:59:00	60.0	7.7	0.1573
0.25	0.1550	0.9968	0.17	0.32	0.639	0.15	8/5/17	7:59:00	120.0	11.0	0.1577
							8/5/17	9:59:00	240.0	15.5	0.1580
							8/5/17	14:10:00	491.0	22.2	0.1583
							8/6/17	6:41:00	1482.0	38.5	0.1587

Project Name:	City of Salinas Public	Safety Center	 Tested By:	G. Bathala	Date:	08/01/17
Project No .:	11693.001		Checked By:	J. Ward	Date:	08/11/17
Boring No.:	LB-2		Depth (ft.):	10.0		
Sample No.:	R2		Sample Ty	pe:	Ring	
Soil Identification:	Yellowish brown silty	sand (SM)				
r		0.800				

Sample Diameter (in.):	2.415
Sample Thickness (in.):	1.000
Weight of Sample + ring (g):	164.35
Weight of Ring (g):	44.84
Height after consol. (in.):	0.9751
Before Test	
Wt. of Wet Sample+Cont. (g):	186.65
Wt. of Dry Sample+Cont. (g):	179.81
Weight of Container (g):	56.89
Initial Moisture Content (%)	5.6
Initial Dry Density (pcf)	94.2
Initial Saturation (%):	19
Initial Vertical Reading (in.)	0.1328
After Test	
Wt. of Wet Sample+Cont. (g):	254.30
Wt. of Dry Sample+Cont. (g):	227.30
Weight of Container (g):	70.35
Final Moisture Content (%)	24.08
Final Dry Density (pcf):	95.6
Final Saturation (%):	85
Final Vertical Reading (in.)	0.1582
Specific Gravity (assumed):	2.70
Water Density (pcf):	62.43

Pressure	Final	Apparent	Load	Deformation	Void	Corrected	Time Readings @ 4 ksf				
(p) (ksf)	(in.)	(in.)	(%)	% of Sample Thickness	Ratio	tion (%)	Date	Time	Elapsed Time (min)	Square Root of Time	Dial Rdgs. (in.)
0.10	0.1331	0.9997	0.00	0.03	0.790	0.03	8/4/17	7:50:00	0.0	0.0	0.1457
0.25	0.1348	0.9981	0.01	0.20	0.787	0.19	8/4/17	7:50:06	0.1	0.3	0.1492
0.50	0.1365	0.9963	0.03	0.37	0.784	0.34	8/4/17	7:50:15	0.2	0.5	0.1494
1.00	0.1402	0.9926	0.05	0.74	0.778	0.69	8/4/17	7:50:30	0.5	0.7	0.1496
2.00	0.1435	0.9893	0.08	1.07	0.773	0.99	8/4/17	7:51:00	1.0	1.0	0.1498
2.00	0.1457	0.9872	0.08	1.29	0.769	1.21	8/4/17	7:52:00	2.0	1.4	0.1500
4.00	0.1518	0.9811	0.11	1.90	0.758	1.79	8/4/17	7:54:00	4.0	2.0	0.1502
8.00	0.1600	0.9728	0.17	2.72	0.745	2.55	8/4/17	7:58:00	8.0	2.8	0.1504
16.00	0.1710	0.9618	0.24	3.82	0.726	3.58	8/4/17	8:05:00	15.0	3.9	0.1505
4.00	0.1667	0.9661	0.15	3.39	0.732	3.24	8/4/17	8:20:00	30.0	5.5	0.1507
1.00	0.1625	0.9703	0.08	2.97	0.739	2.89	8/4/17	8:50:00	60.0	7.7	0.1509
0.25	0.1582	0.9747	0.04	2.54	0.746	2.50	8/4/17	9:50:00	120.0	11.0	0.1511
							8/4/17	11:50:00	240.0	15.5	0.1513
							8/4/17	15:50:00	480.0	21.9	0.1515
							8/5/17	9:39:00	1549.0	39.4	0.1518

Water Density(pcf):

DIRECT SHEAR TEST

Consolidated Drained - ASTM D 3080

Project Name: Project No.: Boring No.: Sample No.: Soil Identification	City of Salinas Public Safety Center11693.001LB-1BB-1On:Dark olive gray fat clay (CH)	Tested By: Checked By: Sample Type: Depth (ft.):	<u>G. Bathala</u> J. Ward 90% Remold 0-5	Date: Date:	08/03/17 08/11/17
	Sample Diameter(in):	2.415	2.415	2.415	
	Sample Thickness(in.):	1.000	1.000	1.000	
	Weight of Sample + ring(gm):	173.43	173.92	175.23	
	Weight of Ring(gm):	42.95	43.26	45.01	
	Before Shearing				-
	Weight of Wet Sample+Cont.(gm):	169.59	169.59	169.59	
	Weight of Dry Sample+Cont.(gm):	152.79	152.79	152.79	
	Weight of Container(gm):	59.19	59.19	59.19	
	Vertical Rdg.(in): Initial	0.0000	0.2820	0.2958	
	Vertical Rdg.(in): Final	0.0471	0.2600	0.2988	
	After Shearing				
	Weight of Wet Sample+Cont.(gm):	203.88	182.95	180.63	
	Weight of Dry Sample+Cont.(gm):	168.55	149.38	149.19	
	Weight of Container(gm):	59.20	40.05	39.50	
	Specific Gravity (Assumed):	2.70	2.70	2.70	

62.43

62.43

62.43

Water Density(pcf):

DIRECT SHEAR TEST

Consolidated Drained - ASTM D 3080

Project Name: Project No.: Boring No.: Sample No.: Soil Identification	City of Salinas Public Safety Center11693.001LB-1R1on:Olive brown silty clay (CL-M	Tested By: Checked By: Sample Type: Depth (ft.): L)	<u>G. Bathala</u> <u>J. Ward</u> <u>Ring</u> <u>5.0</u>	Date: Date:	08/09/17 08/11/17
	Sample Diameter(in):	2.415	2.415	2.415	
	Sample Thickness(in.):	1.000	1.000	1.000	
	Weight of Sample + ring(gm):	186.94	187.26	189.80	
	Weight of Ring(gm):	43.95	43.06	44.80	
	Before Shearing				
	Weight of Wet Sample+Cont.(gm):	201.31	201.31	201.31	
	Weight of Dry Sample+Cont.(gm):	171.85	171.85	171.85	
	Weight of Container(gm):	56.34	56.34	56.34	
	Vertical Rdg.(in): Initial	0.2713	0.0000	0.2483	
	Vertical Rdg.(in): Final	0.2796	-0.0393	0.3005	
	After Shearing				
	Weight of Wet Sample+Cont.(gm):	195.22	193.16	208.59	
	Weight of Dry Sample+Cont.(gm):	165.50	164.49	180.94	
	Weight of Container(gm):	53.80	54.26	70.38	
	Specific Gravity (Assumed):	2.70	2.70	2.70	

62.43

62.43

62.43

DIRECT SHEAR TEST

Consolidated Drained - ASTM D 3080

Project Name:	City of Salinas Public Safety Center	Tested By:	<u>G. Bathala</u>	Date:	08/09/17
Project No.:	<u>11693.001</u>	Checked By:	J. Ward	Date:	08/11/17
Boring No.:	<u>LB-1</u>	Sample Type:	<u>Ring</u>		
Sample No.:	<u>R2</u>	Depth (ft.):	<u>10.0</u>		
Soil Identificati	on: <u>Dark olive gray silty clay ((</u>	<u>CL-ML)</u>			
	Sample Diameter(in):	2.415	2.415	2.415	7
	Sample Thickness(in.):	1.000	1.000	1.000	
	Weight of Sample + ring(gm):	177.14	179.29	193.47	
	Weight of Ring(gm):	45.67	45.68	59.70	
	Before Shearing				
	Weight of Wet Sample+Cont.(gm):	146.44	146.44	146.44	
	Weight of Dry Sample+Cont.(gm):	133.44	133.44	133.44	
	Weight of Container(gm):	67.95	67.95	67.95	
	Vertical Rdg.(in): Initial	0.2509	0.2774	0.0000	
	Vertical Rdg.(in): Final	0.2689	0.3162	-0.0583	
	After Shearing				
	Weight of Wet Sample+Cont.(gm):	193.31	186.65	190.02	
	Weight of Dry Sample+Cont.(gm):	162.30	156.61	161.98	
	Weight of Container(gm):	58.21	52.04	57.53	
	Specific Gravity (Assumed):	2.70	2.70	2.70	
	Water Density(pcf):	62.43	62.43	62.43	

DIRECT SHEAR TEST

Consolidated Drained - ASTM D 3080

Project Name: Project No.: Boring No.: Sample No.: Soil Identificatio	City of Salinas Public Safety Center11693.001LB-2BB-1On:Olive brown lean clay (CL)	Tested By: Checked By: Sample Type: Depth (ft.):	<u>G. Bathala</u> J. Ward 90% Remold 0-5	Date: Date:	08/03/17 08/11/17
	Sample Diameter(in):	2.415	2.415	2.415	
	Sample Thickness(in.):	1.000	1.000	1.000	
	Weight of Sample + ring(gm):	186.02	184.83	186.42	
	Weight of Ring(gm):	45.02	43.26	44.93	

Before Shearing			
Weight of Wet Sample+Cont.(gm):	179.89	179.89	179.89
Weight of Dry Sample+Cont.(gm):	165.94	165.94	165.94
Weight of Container(gm):	68.49	68.49	68.49
Vertical Rdg.(in): Initial	0.0000	0.2804	0.0000
Vertical Rdg.(in): Final	0.0179	0.2764	-0.0113
After Shearing			
Weight of Wet Sample+Cont.(gm):	217.16	209.21	217.58
Weight of Dry Sample+Cont.(gm):	186.63	179.91	189.98
Weight of Container(gm):	64.61	57.88	67.37
Specific Gravity (Assumed):	2.70	2.70	2.70
Water Density(pcf):	62.43	62.43	62.43

LL,PL,PI

MODIFIED PROCTOR COMPACTION TEST

ASTM D 1557

Project Name:	City of Salinas I	Public Safety	Center	Tested By:	O. Figueroa	Date:	08/01/17
Project No.:	11693.001	_		Input By:	J. Ward	Date:	08/02/17
Boring No.:	LB-1	_		Depth (ft.):	0-5		
Sample No.:	BB-1						
Soil Identification:	Dark olive gray	fat clay (CH))				
		_					
Preparation Method	: X	Moist			X	Mechanica	ıl Ram
		Dry				Manual Ra	im
	Mold Volu	ıme (ft³)	0.03330	Ram	Weight = 10 ll	b.; Drop =	= 18 in.
			1	1	1		
TEST	NO.	1	2	3	4	5	6
Wt. Compacted S	oil + Mold (g)	3611	3675	3699			
Weight of Mold	(g)	1857	1857	1857			
Net Weight of Soi	il (g)	1754	1818	1842			
Wet Weight of So	vil + Cont. (g)	395.1	403.1	409.7			
Dry Weight of Soi	il + Cont. (g)	348.9	347.8	345.9			
Weight of Contair	ner (g)	38.7	39.5	39.1			
Moisture Content	(%)	14.89	17.94	20.80			
Wet Density	(pcf)	116.1	120.4	121.9			
Dry Density	(pcf)	101.1	102.1	101.0			
Мах	cimum Dry Der	sity (pcf)	102.0	Optimum	Moisture Co	ontent (%) 18.0
Max PROCEDURE U	kimum Dry Der SED ¹¹	5.0	102.0	Optimum	Moisture Co	ontent (%) 18.0
Max PROCEDURE U	kimum Dry Der SED ¹¹	5.0	102.0	Optimum	Moisture Co	ontent (%) 18.0 SP. GR. = 2.65 SP. GR. = 2.70
Max PROCEDURE US Procedure A Soil Passing No. 4 (4.75	kimum Dry Der SED 11 mm) Sieve	5.0	102.0	Optimum	Moisture Co	ontent (%) 18.0 SP. GR. = 2.65 SP. GR. = 2.70 SP. GR. = 2.75
Max PROCEDURE US Procedure A Soil Passing No. 4 (4.75 Mold : 4 in. (101.6 mm	k imum Dry Der SED ¹¹ mm) Sieve ı) diameter	5.0	102.0	Optimum	Moisture Co	ontent (%) 18.0 SP. GR. = 2.65 SP. GR. = 2.70 SP. GR. = 2.75
Max PROCEDURE US Procedure A Soil Passing No. 4 (4.75 Mold : 4 in. (101.6 mm Layers : 5 (Five) Blows per layer : 25 (ty	kimum Dry Der SED 11 mm) Sieve) diameter wenty-fiye)	5.0		Optimum	Moisture Co	ontent (%) 18.0 SP. GR. = 2.65 SP. GR. = 2.70 SP. GR. = 2.75
Max PROCEDURE US Procedure A Soil Passing No. 4 (4.75 Mold : 4 in. (101.6 mm Layers : 5 (Five) Blows per layer : 25 (tw May be used if +#4 is 20	kimum Dry Der SED 11 mm) Sieve i) diameter wenty-five) 0% or less 11	5.0 0.0	102.0	Optimum	Moisture Co	ontent (%) 18.0 SP. GR. = 2.65 SP. GR. = 2.70 SP. GR. = 2.75
Max PROCEDURE US Procedure A Soil Passing No. 4 (4.75 Mold : 4 in. (101.6 mm Layers : 5 (Five) Blows per layer : 25 (tw May be used if +#4 is 20 Procedure B	kimum Dry Der SED 11 mm) Sieve i) diameter wenty-five) 0% or less 11	5.0 (pcf)		Optimum	Moisture Co	ontent (%) 18.0 SP. GR. = 2.65 SP. GR. = 2.70 SP. GR. = 2.75
Max PROCEDURE US Procedure A Soil Passing No. 4 (4.75 Mold : 4 in. (101.6 mm Layers : 5 (Five) Blows per layer : 25 (tw May be used if +#4 is 20 Procedure B Soil Passing 3/8 in. (9.5	kimum Dry Der SED 11 mm) Sieve 11 i) diameter 11 wenty-five) 11 0% or less 11 mm) Sieve 11	5.0 (pcf)		Optimum	Moisture Co	ontent (%) 18.0
Max PROCEDURE US Procedure A Soil Passing No. 4 (4.75 Mold : 4 in. (101.6 mm Layers : 5 (Five) Blows per layer : 25 (tw May be used if +#4 is 20 Procedure B Soil Passing 3/8 in. (9.5 Mold : 4 in. (101.6 mm Layers : 5 (Five)	kimum Dry Der SED 11 mm) Sieve 11 i) diameter 11 wenty-five) 11 0% or less 11 mm) Sieve 11 i) diameter 11 mm) Sieve 12 i) diameter 12	5.0 (pcf)		Optimum	Moisture Co	ontent (%) 18.0
Max PROCEDURE US Procedure A Soil Passing No. 4 (4.75 Mold : 4 in. (101.6 mm Layers : 5 (Five) Blows per layer : 25 (tw May be used if +#4 is 20 Procedure B Soil Passing 3/8 in. (9.5 Mold : 4 in. (101.6 mm Layers : 5 (Five) Blows per layer : 25 (tw	kimum Dry Der SED 11 mm) Sieve 11 i) diameter 11 wenty-five) 11 mm) Sieve 11 i) diameter 11 wenty-five) 11 wenty-five) 11 wenty-five) 12 wenty-five) 12	5.0 (pcf)		Optimum	Moisture Co	ontent (%) 18.0
Max PROCEDURE US Procedure A Soil Passing No. 4 (4.75 Mold : 4 in. (101.6 mm Layers : 5 (Five) Blows per layer : 25 (tw May be used if +#4 is 20 Procedure B Soil Passing 3/8 in. (9.5 Mold : 4 in. (101.6 mm Layers : 5 (Five) Blows per layer : 25 (tw Use if +#4 is >20% and 20% or lass	kimum Dry Der SED 11 mm) Sieve 11 mm) Sieve 11 wenty-five) 11 mm) Sieve 11 mm) Sieve 11 wenty-five) 11 wenty-five) 11 wenty-five) 11 wenty-five) 12 wenty-five) 12 I + 3/8 in. is 10	5.0 (pcf)		Optimum	Moisture Co	ontent (%) 18.0
Max PROCEDURE US Soil Passing No. 4 (4.75 Mold : 4 in. (101.6 mm Layers : 5 (Five) Blows per layer : 25 (tw May be used if +#4 is 20 Procedure B Soil Passing 3/8 in. (9.5 Mold : 4 in. (101.6 mm Layers : 5 (Five) Blows per layer : 25 (tw Use if +#4 is >20% and 20% or less	kimum Dry Der SED 11 mm) Sieve 11 i) diameter 11 wenty-five) 11 mm) Sieve 11 i) diameter 11 wenty-five) 11 wenty-five) 11 wenty-five) 11 i) diameter 12 wenty-five) 14 i + 3/8 in. is 10	5.0 (pcf)		Optimum		ontent (%) 18.0
Max PROCEDURE US Procedure A Soil Passing No. 4 (4.75 Mold : 4 in. (101.6 mm Layers : 5 (Five) Blows per layer : 25 (tw May be used if +#4 is 20 Procedure B Soil Passing 3/8 in. (9.5 Mold : 4 in. (101.6 mm Layers : 5 (Five) Blows per layer : 25 (tw Use if +#4 is >20% and 20% or less Procedure C Soil Passing 2/4 in. (10.6	kimum Dry Der SED 11 mm) Sieve 11 mm) Sieve 11 wenty-five) 11 mm) Sieve 11 mm) Sieve 11 mm) Sieve 11 wenty-five) 11 venty-five) 12 i + 3/8 in. is 10 mm) Sieve 10 omm) Sieve 10	5.0 (pcf)		Optimum	Moisture Co	ontent (%) 18.0
Max PROCEDURE US Soil Passing No. 4 (4.75 Mold : 4 in. (101.6 mm Layers : 5 (Five) Blows per layer : 25 (tw May be used if +#4 is 20 Procedure B Soil Passing 3/8 in. (9.5 Mold : 4 in. (101.6 mm Layers : 5 (Five) Blows per layer : 25 (tw Use if +#4 is >20% and 20% or less Procedure C Soil Passing 3/4 in. (19.0 Mold : 6 in. (152.4 mm	kimum Dry Der SED 11 mm) Sieve 11 mm) Sieve 11 wenty-five) 11 mm) Sieve 11 mm) Sieve 11 mm) Sieve 11 wenty-five) 11 wenty-five) 11 i + 3/8 in. is 10 omm) Sieve 10 i + 3/8 in. is 10 omm) Sieve 10 i + 3/8 in. is 10 o mm) Sieve 10	5.0 (pcf)		Optimum	Moisture Co	ontent (%) 18.0
Max PROCEDURE US Soil Passing No. 4 (4.75 Mold : 4 in. (101.6 mm Layers : 5 (Five) Blows per layer : 25 (tw May be used if +#4 is 20 Procedure B Soil Passing 3/8 in. (9.5 Mold : 4 in. (101.6 mm Layers : 5 (Five) Blows per layer : 25 (tw Use if +#4 is >20% and 20% or less Procedure C Soil Passing 3/4 in. (19.0 Mold : 6 in. (152.4 mm Layers : 5 (Five)	kimum Dry Der SED 11 mm) Sieve 11 mm) Sieve 11 wenty-five) 11 mm) Sieve 11 mm) Sieve 11 mm) Sieve 11 wenty-five) 11 venty-five) 14 i + 3/8 in. is 10 o mm) Sieve 10 i + 3/8 in. is 10 o mm) Sieve 10 i diameter 10	5.0 (pcf)		Optimum	Moisture Co	ontent (%) 18.0
Max PROCEDURE US Soil Passing No. 4 (4.75 Mold : 4 in. (101.6 mm Layers : 5 (Five) Blows per layer : 25 (tw May be used if +#4 is 20 Procedure B Soil Passing 3/8 in. (9.5 Mold : 4 in. (101.6 mm Layers : 5 (Five) Blows per layer : 25 (tw Use if +#4 is >20% and 20% or less Procedure C Soil Passing 3/4 in. (19.0 Mold : 6 in. (152.4 mm Layers : 5 (Five) Blows per layer : 56 (fit Use if +3/8 in. is >20%	kimum Dry Der SED 11 mm) Sieve 11 mm) Sieve 11 wenty-five) 11 mm) Sieve 11 in ameter 12 omm) Sieve 12 i + 3/8 in. is 10 omm) Sieve 10 i + 3/8 in. is 10 omm) Sieve 10 and + 34 in. 10	5.0 (pcf)		Optimum	Moisture Co	ontent (%) 18.0
Max PROCEDURE US Procedure A Soil Passing No. 4 (4.75 Mold : 4 in. (101.6 mm Layers : 5 (Five) Blows per layer : 25 (tw May be used if $+#4$ is 20 Procedure B Soil Passing 3/8 in. (9.5 Mold : 4 in. (101.6 mm Layers : 5 (Five) Blows per layer : 25 (tw Use if $+#4$ is >20% and 20% or less Procedure C Soil Passing 3/4 in. (19.0 Mold : 6 in. (152.4 mm Layers : 5 (Five) Blows per layer : 56 (fite) Blows per layer : 56 (fite) Blows per layer : 56 (fite) Blows per layer : 56 (fite)	kimum Dry DerSED11mm) Sieve i) diameter11mm) Sieve i) diameter11mm) Sieve i) diameter10wenty-five) i + 3/8 in. is10o mm) Sieve i) diameter10o mm) Sieve i) diameter10o mm) Sieve i) diameter10fty-six) and + 34 in.10	sity (pcf) 5.0 0.0 5.0 5.0 5.0 0.0 0.0 0.0		Optimum	Moisture Co	ontent (%) 18.0
Max PROCEDURE US Soil Passing No. 4 (4.75 Mold : 4 in. (101.6 mm Layers : 5 (Five) Blows per layer : 25 (tw May be used if $+#4$ is 20 Procedure B Soil Passing 3/8 in. (9.5 Mold : 4 in. (101.6 mm Layers : 5 (Five) Blows per layer : 25 (tw Use if $+#4$ is >20% and 20% or less Procedure C Soil Passing 3/4 in. (19.0 Mold : 6 in. (152.4 mm Layers : 5 (Five) Blows per layer : 56 (fit Use if $+3/8$ in. is >20% is <30% Particle-Size Dist	kimum Dry Der SED 11 mm) Sieve 11 mm) Sieve 11 wenty-five) 11 mm) Sieve 11 mm) Sieve 11 mm) Sieve 11 mm) Sieve 11 wenty-five) 12 venty-five) 14 1 + 3/8 in. is 10 0 mm) Sieve 10 o mm) Sieve 10 o mm) Sieve 10 and + 34 in. 10 ribution: 10	5.0 (pcf)		Optimum	Moisture Co	ontent (%) 18.0
Max PROCEDURE US Soil Passing No. 4 (4.75 Mold : 4 in. (101.6 mm Layers : 5 (Five) Blows per layer : 25 (tw May be used if +#4 is 20 Procedure B Soil Passing 3/8 in. (9.5 Mold : 4 in. (101.6 mm Layers : 5 (Five) Blows per layer : 25 (tw Use if +#4 is >20% and 20% or less Procedure C Soil Passing 3/4 in. (19.0 Mold : 6 in. (152.4 mm Layers : 5 (Five) Blows per layer : 56 (fit) Use if +3/8 in. is >20% is <30% Particle-Size Dist	kimum Dry Der SED 11 mm) Sieve 11 mm) Sieve 11 wenty-five) 11 mm) Sieve 11 mm) Sieve 11 mm) Sieve 11 mm) Sieve 11 wenty-five) 12 venty-five) 14 1 + 3/8 in. is 10 0 mm) Sieve 10 and + 34 in. 10 ribution: 10	sity (pcf) 5.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		Optimum	Moisture Co	ontent (%) 18.0

Moisture Content (%)

LL,PL,PI

MODIFIED PROCTOR COMPACTION TEST

ASTM D 1557

Project Name:	City of Salinas I	Public Safety	Center	Tested By:	O. Figueroa	Date:	08/01/17
Project No	11693 001			Input By	L Ward	Date:	08/02/17
Boring No.:	LB-2	-		Depth (ft.):	0-5	Bator	00/02/17
Sample No ·	 BB-1	-		2 op ().			
Soil Identification:	Olive brown lea	n clay (CL)					
Preparation Method	X	Moist Dry			X	Mechanica Manual Ra	l Ram m
	Mold Volu	ıme (ft ³)	0.03330	Ram I	Neight = 10 ll	b.; Drop =	= 18 in.
TEST	NO.	1	2	3	4	5	6
Wt. Compacted S	oil + Mold (g)	3698	3774	3837	3817		
Weight of Mold	(g)	1857	1857	1857	1857		
Net Weight of Soi	l (g)	1841	1917	1980	1960		
Wet Weight of So	il + Cont. (g)	390.0	382.4	406.1	430.8		
Dry Weight of Soi	I + Cont. (g)	358.0	344.3	357.5	371.9		
Weight of Contair	ner (g)	39.7	39.7	38.4	38.9		
Moisture Content	(%)	10.05	12.51	15.23	17.69		
Wet Density	(pcf)	121.9	126.9	131.1	129.8		
Dry Density	(pcf)	110.7	112.8	113.8	110.3		
Max	imum Dry Der	5.0	114.0	Optimum	Moisture Co	ontent (%) 14.5
I ROOLDORE O							SP. GR. = 2.65
XProcedure ASoil Passing No. 4 (4.75Mold : 4 in. (101.6 mmLayers : 5 (Five)Blows per layer : 25 (twMay be used if +#4 is 20Procedure BSoil Passing 3/8 in. (9.5	mm) Sieve) diameter venty-five) 0% or less 11 mm) Sieve	0.0					SP. GR. = 2.75
Mold : 4 in. (101.6 mm Layers : 5 (Five) Blows per layer : 25 (tv Use if $+#4$ is >20% and 20% or less	venty-five) +3/8 in. is	15.0					
Procedure C Soil Passing 3/4 in. (19.0 Mold : 6 in. (152.4 mm Layers : 5 (Five) Blows per layer : 56 (fit Use if +3/8 in. is >20% is <30%) mm) Sieve) diameter fty-six) 10 and + ³ / ₄ in.	0.0					
Particle-Size Dist GR:SA:FI Atterberg Limits:	ribution:] g	5.0	10.0		15.0	20.0	25.

Moisture Content (%)

EXPANSION INDEX of SOILS ASTM D 4829

Project Name:	City of Salinas Public Safety Center	Tested By: A. Santos	Date:	08/03/17
Project No .:	11693.001	Checked By: J. Ward	Date:	08/11/17
Boring No.:	LB-1	Depth (ft.): 0-5		
Sample No.:	BB-1			
Soil Identification:	Dark olive gray fat clay (CH)			

Dry Wt. of Soil + Cont. (g)	1000.00
Wt. of Container No. (g)	0.00
Dry Wt. of Soil (g)	1000.00
Weight Soil Retained on #4 Sieve	0.00
Percent Passing # 4	100.00

MOLDED SPECIMEN		Before Test	After Test
Specimen Diameter	(in.)	4.01	4.01
Specimen Height	(in.)	1.0000	1.1005
Wt. Comp. Soil + Mold	(g)	555.00	409.20
Wt. of Mold	(g)	202.30	0.00
Specific Gravity (Assum	ed)	2.70	2.70
Container No.		0	0
Wet Wt. of Soil + Cont.	(g)	717.50	611.50
Dry Wt. of Soil + Cont.	(g)	626.70	510.33
Wt. of Container	(g)	0.00	202.30
Moisture Content	(%)	14.49	32.84
Wet Density	(pcf)	106.4	112.2
Dry Density	(pcf)	92.9	84.4
Void Ratio		0.814	0.997
Total Porosity		0.449	0.499
Pore Volume	(cc)	92.9	113.7
Degree of Saturation (%	6) [S meas]	48.0	89.0

SPECIMEN INUNDATION in distilled water for the period of 24 h or expansion rate < 0.0002 in./h

Date	Time	Pressure (psi)	Elapsed Time (min.)	Dial Readings (in.)
08/03/17	14:00	1.0	0	0.2155
08/03/17	14:10	1.0	10	0.2150
	Ad	d Distilled Water to the	e Specimen	
08/03/17	15:00	1.0	50	0.2210
08/04/17	7:30	1.0	1040	0.3160
08/04/17	8:45	1.0	1115	0.3160

Expansion Index (EI meas) = ((Final Rdg - Initial Rdg) / Initial Thick.) x 1000	101	
---	-----	--

Т

Г

EXPANSION INDEX of SOILS ASTM D 4829

Project Name:	City of Salinas Public Safety Center	Tested By: S. Felter	Date:	07/31/17
Project No .:	11693.001	Checked By: J. Ward	Date:	08/11/17
Boring No.:	LB-2	Depth (ft.): 0-5		
Sample No.:	BB-1			
Soil Identification:	Olive brown lean clay (CL)			_

Dry Wt. of Soil + Cont. (g)	1000.00
Wt. of Container No. (g)	0.00
Dry Wt. of Soil (g)	1000.00
Weight Soil Retained on #4 Sieve	0.00
Percent Passing # 4	100.00

MOLDED SPECIMEN		Before Test	After Test
Specimen Diameter	(in.)	4.01	4.01
Specimen Height	(in.)	1.0000	1.0780
Wt. Comp. Soil + Mold	(g)	531.20	417.02
Wt. of Mold	(g)	164.60	0.00
Specific Gravity (Assume	ed)	2.70	2.70
Container No.		0	0
Wet Wt. of Soil + Cont.	(g)	722.20	581.62
Dry Wt. of Soil + Cont.	(g)	632.40	485.62
Wt. of Container	(g)	0.00	164.60
Moisture Content	(%)	14.20	29.90
Wet Density	(pcf)	110.6	116.7
Dry Density	(pcf)	96.8	89.8
Void Ratio		0.741	0.877
Total Porosity		0.426	0.467
Pore Volume	(cc)	88.1	104.2
Degree of Saturation (%	b) [S meas]	51.7	92.1

SPECIMEN INUNDATION in distilled water for the period of 24 h or expansion rate < 0.0002 in./h

Date	Time	Pressure (psi)	Elapsed Time (min.)	Dial Readings (in.)
07/31/17	8:35	1.0	0	0.1580
07/31/17	8:45	1.0	10	0.1580
	Ad	d Distilled Water to the	e Specimen	
07/31/17	11:32	1.0	167	0.2290
08/01/17	6:30	1.0	1305	0.2360
08/01/17	7:40	1.0	1375	0.2360

Expansion Index (EI meas)	=	((Final Rdg - Initial Rdg) / Initial Thick.) x 1000	78	

TESTS for SULFATE CONTENTLeightonCHLORIDE CONTENT and pH of SOILS

Project Name:	City of Salinas Public Safety Ce	enter Tes	ted By :	G. Berdy	Date:	07/28/17
Project No. :	11693.001	Dat	a Input By:	J. Ward	Date:	08/11/17

Boring No.	LB-1	LB-2	
Sample No.	BB-1	BB-1	
Sample Depth (ft)	0-5	0-5	
Soil Identification:	Dark olive gray CH	Olive brown CL	
Wet Weight of Soil + Container (g)	146.12	191.89	
Dry Weight of Soil + Container (g)	141.95	185.86	
Weight of Container (g)	72.02	58.69	
Moisture Content (%)	5.96	4.74	
Weight of Soaked Soil (g)	100.41	100.43	

SULFATE CONTENT, DOT California Test 417, Part II

Beaker No.	0	315	
Crucible No.	26	6	
Furnace Temperature (°C)	860	860	
Time In / Time Out	8:30/9:15	8:30/9:15	
Duration of Combustion (min)	45	45	
Wt. of Crucible + Residue (g)	20.9376	23.3558	
Wt. of Crucible (g)	20.9350	23.3525	
Wt. of Residue (g) (A)	0.0026	0.0033	
PPM of Sulfate (A) x 41150	106.99	135.79	
PPM of Sulfate, Dry Weight Basis	114	143	

CHLORIDE CONTENT, DOT California Test 422

ml of Extract For Titration (B)	15	15	
ml of AgNO3 Soln. Used in Titration (C)	0.6	0.9	
PPM of Chloride (C -0.2) * 100 * 30 / B	80	140	
PPM of Chloride, Dry Wt. Basis	85	147	

pH TEST, DOT California Test 643

pH Value	6.94	8.15	
Temperature °C	20.5	20.5	

SOIL RESISTIVITY TEST DOT CA TEST 643

Project Name:	City of Salinas Public Safety Center	Tested By :	G. Berdy	Date:	07/31/17
Project No. :	11693.001	Data Input By:	J. Ward	Date:	08/11/17
Boring No.:	LB-1	Depth (ft.) :	0-5		

Sample No. : BB-1

Soil Identification:* Dark olive gray CH

*California Test 643 requires soil specimens to consist only of portions of samples passing through the No. 8 US Standard Sieve before resistivity testing. Therefore, this test method may not be representative for coarser materials.

Specimen No.	Water Added (ml) (Wa)	Adjusted Moisture Content (MC)	Resistance Reading (ohm)	Soil Resistivity (ohm-cm)
1	30	30.39	1300	1300
2	40	38.53	1100	1100
3	50	46.68	1600	1600
4				
5				

Moisture Content (%) (MCi)	5.96			
Wet Wt. of Soil + Cont. (g)	146.12			
Dry Wt. of Soil + Cont. (g)	141.95			
Wt. of Container (g)	72.02			
Container No.				
Initial Soil Wt. (g) (Wt)	130.13			
Box Constant	1.000			
MC = (((1+Mci/100)x(Wa/Wt+1))-1)x100				

Min. Resistivity	Moisture Content	Sulfate Content	Chloride Content	So	il pH
(ohm-cm)	(%)	(ppm)	(ppm)	pH Temp. (°	
DOT CA	Test 643	DOT CA Test 417 Part II	DOT CA Test 422	DOT CA Test 643	
1090	37.6	114	85	6.94	20.5

SOIL RESISTIVITY TEST DOT CA TEST 643

Project Name:	City of Salinas Public Safety Center	Tested By :	G. Berc
Project No. :	11693.001	Data Input By:	J. Ward
Boring No.:	LB-2	Depth (ft.) :	0-5

Sample No. : BB-1

Soil Identification:* Olive brown CL

Tested By :	G. Berdy	Date:	07/28/17
Data Input By:	J. Ward	Date:	08/11/17
Depth (ft.):	0-5		

*California Test 643 requires soil specimens to consist only of portions of samples passing through the No. 8 US Standard Sieve before resistivity testing. Therefore, this test method may not be representative for coarser materials.

Specimen No.	Water Added (ml) (Wa)	Adjusted Moisture Content (MC)	Resistance Reading (ohm)	Soil Resistivity (ohm-cm)
1	30	28.81	1080	1080
2	40	36.83	930	930
3	50	44.85	990	990
4				
5				

Moisture Content (%) (MCi)	4.74		
Wet Wt. of Soil + Cont. (g)	191.89		
Dry Wt. of Soil + Cont. (g)	185.86		
Wt. of Container (g)	58.69		
Container No.			
Initial Soil Wt. (g) (Wt)	130.58		
Box Constant	1.000		
MC =(((1+Mci/100)x(Wa/Wt+1))-1)x100			

Min. Resistivity	Moisture Content	Sulfate Content	Chloride Content	So	il pH
(ohm-cm)	(%)	(ppm)	(ppm)	pH Temp. (°	
DOT CA	A Test 643	DOT CA Test 417 Part II DOT CA Test 422 DOT CA		A Test 643	
928	37.7	143	147	8.15	20.5

APPENDIX C

Percolation Test Results

Boring Percolation Test Data Sheet

Project Number:	11693.001	Test Hole Number:	LB-3	
Project Name:	Salinas Police HQ	Date Excavated:	7/13/2017	
Earth Description:	Alluvium	Date Tested:	7/14/2017	
Liquid Description:	Tap water	Depth of boring (ft):	10	
Tested By:	JMP	Diameter of boring (in):	8	
Time Interval Standard		Diameter of casing (in):	2	
Start Time for Pre-Soak:	11:10	Length of slotted of casing	(ft):	5
Start Time for Standard:	12:13	Depth to Initial Water Dept	th (ft):	5
Standard Time Interval		Porosity of Annulus Materi	al <i>, n</i> :	0.35
Between Readings, mins:	30	Bentonite Plug at Bottom:	No	

Percolation Data

Reading	Time	Time Interval, Δt (min.)	Initial/Final Depth to Water (ft.)	Initial/Final Water Height, H ₀ /H _f (in.)	Total Water Drop, ∆d (in.)	Percolation Rate (min./in.)	Infiltration Rate (in./hr.)			
1	7:00	20	4.98	60.2	0.0	#DIV/01	0.00			
1	7:30	50	4.98	60.2	0.0	#DIV/0!	0.00			
2	7:30	30	4.98	60.2	0.4	82.22	0.01			
2	8:00	50	5.01	59.9	0.4	65.55	0.01			
2	8:00	20	5.01	59.9	0.2	125.00	0.01			
5	8:30		5.03	59.6	0.2	125.00	0.01			
Δ	8:30	20	5.03	59.6	0.4	0.4	0.4	0.4	02.22	0.01
4	9:00		5.06	59.3	0.4	85.55	0.01			
5	9:00	20	5.06	59.3	0.5	62 50	0.01			
J	9:30		5.10	58.8	0.5	02.30	0.01			
6	9:30	- 30	5.00	60.0	0.5	62 50	0.01			
0	10:00		5.04	59.5	0.5	02.30	0.01			
7	10:00	20	5.04	59.5	0.6	50.00	0.02			
/	10:30	50	5.09	58.9	0.6	0.6	30.00	0.02		
0	10:30	20	5.00	60.0	0.5	0.5	0.5	0.5	62 50	0.01
0	11:00	50	5.04	59.5	0.5	02.30	0.01			
0	11:00	20	5.04	59.5	0.5	62 50	0.01			
9	11:30	50	5.08	59.0	0.5	02.30	0.01			
10	11:30	20	5.00	60.0	0.5	62 50	0.01			
10	12:00		5.04	59.5	0.5	02.30	0.01			
11	12:00	20	5.04	59.5	0.6	50.00	0.02			
11	12:30	50	5.09	58.9	0.0	30.00	0.02			
12	12:30	20	5.00	60.0	0.5	62 50	0.01			
12	13:00	50	5.04	59.5	0.5	62.50	0.01			

Infiltration Rate (I) = Flow Volume/Flow Area/ Δt

Infiltration Rate, I (Last Reading) =

in./hr.

0.01

APPENDIX D1

Seismicity Data

11693.001EQSearch

ESTIMATION OF PEAK ACCELERATION FROM CALIFORNIA EARTHQUAKE CATALOGS

JOB NUMBER: 11693.001

DATE: 08-10-2017

* 1

JOB NAME: 11693.001

EARTHQUAKE-CATALOG-FILE NAME: ALLQUAKE.DAT

MAGNITUDE RANGE: MINIMUM MAGNITUDE: 4.00 MAXIMUM MAGNITUDE: 9.00

SITE COORDINATES: SITE LATITUDE: 36.6736 SITE LONGITUDE: 121.6450

SEARCH DATES: START DATE: 1800 END DATE: 2016

SEARCH RADIUS: 62.0 mi 99.8 km

ATTENUATION RELATION: 3) Boore et al. (1997) Horiz. - NEHRP D (250) UNCERTAINTY (M=Median, S=Sigma): M Number of Sigmas: 0.0 ASSUMED SOURCE TYPE: DS [SS=Strike-slip, DS=Reverse-slip, BT=Blind-thrust] SCOND: 0 Depth Source: A Basement Depth: 5.00 km Campbell SSR: Campbell SHR: COMPUTE PEAK HORIZONTAL ACCELERATION

MINIMUM DEPTH VALUE (km): 0.0

11693.001EQSearch

EARTHQUAKE SEARCH RESULTS

Page 1

FILE CODE	 LAT. NORTH	LONG. WEST	DATE	TIME (UTC) H M Sec	DEPTH (km)	QUAKE MAG.	SITE ACC. g	SITE MM INT.	APPROX. DISTANCE mi [km]
DMG DMG DMGI DMG DMG DMG DMG DMG DMG DMG DMG DMG DMG	36.6700 36.6700 36.7200 36.7200 36.7000 36.7000 36.7000 36.5800 36.5800 36.5800 36.5800 36.5800 36.7600 36.7600 36.7700 36.7000 36.7700 36.6000 36.7700 36.8000 36.8000 36.8010 36.8010 36.8010 36.8010 36.8010 36.8010 36.8010 36.8010 36.8010 36.8010 36.8000 36.8000 36.8000 36.8000 36.8000 36.8000 36.8000 36.8000 36.8000 36.8000 36.8000 36.8000 36.8000 36.8000 36.8000 36.8000 36.8000 <td< td=""><td>121.6700 121.6700 121.6700 121.7000 121.5600 121.6700 121.6700 121.6700 121.6700 121.6700 121.5000 121.5000 121.5000 121.5000 121.5200 121.5200 121.5410 121.5200 121.5410 121.5200 121.5400 121.5200 121.5400 121.5200 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121</td><td>12/28/1924 10/09/1931 08/06/1916 05/26/1959 03/05/1937 09/20/1939 10/05/1920 03/09/1924 08/25/1923 06/16/1920 08/31/1963 03/26/1984 09/28/1981 10/27/1937 04/13/1980 04/25/1908 01/12/2011 09/23/1972 08/02/1979 10/22/1984 11/20/2014 10/03/1972 08/02/1979 10/22/1984 11/29/1995 02/11/2001 10/03/1972 08/26/2001 08/26/2001 08/26/2001 08/26/2001 08/26/2001 08/26/2001 08/26/2001 08/26/2001 08/26/2001 08/26/2001 03/16/2004 08/12/1988 01/27/1981 10/18/1800 11/13/1892 01/09/1930 01/09/1930 01/09/1930 01/09/1930 01/09/1930 01/09/1930 01/09/1930</td><td>$\begin{array}{c} 421 & 0.0 \\ 1950 & 0.0 \\ 2056 & 0.0 \\ 1558 & 1.0 \\ 1247 & 0.0 \\ 24529 & 0 \\ 19 & 4 & 0.0 \\ 1133 & 0.0 \\ 1121 & 0.0 \\ 12 & 9 & 0.0 \\ 163114 & 2 \\ 075839 & 7 \\ 73439 & 0 \\ 1553 & 0.0 \\ 61556 & 0 \\ 1133 & 0.0 \\ 085103 & 6 \\ 15556 & 0 \\ 1133 & 0.0 \\ 085103 & 6 \\ 15556 & 0 \\ 1133 & 0.0 \\ 085103 & 6 \\ 15556 & 0 \\ 1133 & 0.0 \\ 085103 & 6 \\ 1133 & 0.0 \\ 085103 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 04323 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 04323 & 9 \\ 05030 & 2 \\ 0500 & 2 \\ 0500 & 2 \\ 0500 & 2 \\ 0500 & 2 \\$</td><td>$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$</td><td>$\begin{array}{c} 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .60 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .50 \\ 4 .70 \\ 4 .50 \\ 4 .50 \\ 4 .70 \\ 4 .50 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\$</td><td>0.145 0.145 0.145 0.161 0.152 0.085 0.085 0.085 0.085 0.085 0.091 0.070 0.068 0.091 0.066 0.062 0.061 0.062 0.061 0.062 0.061 0.062 0.061 0.063 0.062 0.061 0.063 0.062 0.061 0.060 0.063 0.061 0.060 0.062 0.061 0.063 0.062 0.061 0.063 0.062 0.061 0.063 0.065 0.062 0.062 0.063 0.065 0.062 0.063 0.065 0.062 0.063 0.062 0.063 0.065 0.062 0.063 0.065 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.055 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0</td><td>VIII VIII VIII VIII VIII VIII VIII VIII VIII VII VII</td><td>$\begin{array}{c} 1.4(2.3)\\ 1.4(2.3)\\ 1.4(2.3)\\ 3.5(5.6)\\ 3.5(5.7)\\ 4.7(7.6)\\ 6.6(10.6)\\ 6.6(10.6)\\ 6.6(10.6)\\ 6.6(10.6)\\ 6.6(10.6)\\ 6.6(10.6)\\ 7.0(11.2)\\ 8.9(14.3)\\ 9.3(15.0)\\ 9.5(15.3)\\ 9.6(15.4)\\ 10.0(16.1)\\ 10.5(17.0)\\ 10.5(17.0)\\ 10.5(17.0)\\ 10.9(17.6)\\ 10.9(17.6)\\ 10.9(17.6)\\ 10.9(17.6)\\ 10.9(17.6)\\ 10.9(17.6)\\ 10.9(17.6)\\ 10.9(17.6)\\ 11.0(17.8)\\ 11.0(17.8)\\ 11.0(17.8)\\ 11.0(17.8)\\ 11.1(17.9)\\ 11.2(18.0)\\ 11.3(18.2)\\ 11.4(18.4)\\ 11.5(18.5)\\ 11.5(18.5)\\ 11.6(18.6)\\ 11.8(19.1)\\ 11.8(19.1)\\ 11.8(19.1)\\ 11.8(19.1)\\ 12.1(19.4)\\ 12.2(19.7)\\ 12.3(19.8)\\ 12.5(20.2)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)$</td></td<>	121.6700 121.6700 121.6700 121.7000 121.5600 121.6700 121.6700 121.6700 121.6700 121.6700 121.5000 121.5000 121.5000 121.5000 121.5200 121.5200 121.5410 121.5200 121.5410 121.5200 121.5400 121.5200 121.5400 121.5200 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121.5000 121	12/28/1924 10/09/1931 08/06/1916 05/26/1959 03/05/1937 09/20/1939 10/05/1920 03/09/1924 08/25/1923 06/16/1920 08/31/1963 03/26/1984 09/28/1981 10/27/1937 04/13/1980 04/25/1908 01/12/2011 09/23/1972 08/02/1979 10/22/1984 11/20/2014 10/03/1972 08/02/1979 10/22/1984 11/29/1995 02/11/2001 10/03/1972 08/26/2001 08/26/2001 08/26/2001 08/26/2001 08/26/2001 08/26/2001 08/26/2001 08/26/2001 08/26/2001 08/26/2001 03/16/2004 08/12/1988 01/27/1981 10/18/1800 11/13/1892 01/09/1930 01/09/1930 01/09/1930 01/09/1930 01/09/1930 01/09/1930 01/09/1930	$\begin{array}{c} 421 & 0.0 \\ 1950 & 0.0 \\ 2056 & 0.0 \\ 1558 & 1.0 \\ 1247 & 0.0 \\ 24529 & 0 \\ 19 & 4 & 0.0 \\ 1133 & 0.0 \\ 1121 & 0.0 \\ 12 & 9 & 0.0 \\ 163114 & 2 \\ 075839 & 7 \\ 73439 & 0 \\ 1553 & 0.0 \\ 61556 & 0 \\ 1133 & 0.0 \\ 085103 & 6 \\ 15556 & 0 \\ 1133 & 0.0 \\ 085103 & 6 \\ 15556 & 0 \\ 1133 & 0.0 \\ 085103 & 6 \\ 15556 & 0 \\ 1133 & 0.0 \\ 085103 & 6 \\ 1133 & 0.0 \\ 085103 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 043232 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 04323 & 9 \\ 050302 & 4 \\ 063832 & 6 \\ 11013 & 6 \\ 04323 & 9 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 05030 & 2 \\ 0500 & 2 \\ 0500 & 2 \\ 0500 & 2 \\ 0500 & 2 \\ $	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$	$\begin{array}{c} 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .60 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .50 \\ 4 .70 \\ 4 .50 \\ 4 .50 \\ 4 .70 \\ 4 .50 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .00 \\ 4 .50 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\ 4 .00 \\$	0.145 0.145 0.145 0.161 0.152 0.085 0.085 0.085 0.085 0.085 0.091 0.070 0.068 0.091 0.066 0.062 0.061 0.062 0.061 0.062 0.061 0.062 0.061 0.063 0.062 0.061 0.063 0.062 0.061 0.060 0.063 0.061 0.060 0.062 0.061 0.063 0.062 0.061 0.063 0.062 0.061 0.063 0.065 0.062 0.062 0.063 0.065 0.062 0.063 0.065 0.062 0.063 0.062 0.063 0.065 0.062 0.063 0.065 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.055 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0	VIII VIII VIII VIII VIII VIII VIII VIII VIII VII VII	$\begin{array}{c} 1.4(2.3)\\ 1.4(2.3)\\ 1.4(2.3)\\ 3.5(5.6)\\ 3.5(5.7)\\ 4.7(7.6)\\ 6.6(10.6)\\ 6.6(10.6)\\ 6.6(10.6)\\ 6.6(10.6)\\ 6.6(10.6)\\ 6.6(10.6)\\ 7.0(11.2)\\ 8.9(14.3)\\ 9.3(15.0)\\ 9.5(15.3)\\ 9.6(15.4)\\ 10.0(16.1)\\ 10.5(17.0)\\ 10.5(17.0)\\ 10.5(17.0)\\ 10.9(17.6)\\ 10.9(17.6)\\ 10.9(17.6)\\ 10.9(17.6)\\ 10.9(17.6)\\ 10.9(17.6)\\ 10.9(17.6)\\ 10.9(17.6)\\ 11.0(17.8)\\ 11.0(17.8)\\ 11.0(17.8)\\ 11.0(17.8)\\ 11.1(17.9)\\ 11.2(18.0)\\ 11.3(18.2)\\ 11.4(18.4)\\ 11.5(18.5)\\ 11.5(18.5)\\ 11.6(18.6)\\ 11.8(19.1)\\ 11.8(19.1)\\ 11.8(19.1)\\ 11.8(19.1)\\ 12.1(19.4)\\ 12.2(19.7)\\ 12.3(19.8)\\ 12.5(20.2)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)\\ 12.9(20.7)$
DMG	36.8500	121.5700	03/28/1948	2245 0.0	0.0	4.50	0.070	VI	12.9(20.7)

Page 2
11693.001EQSearch

DMG BRK T-A DMG DMG DMG DMG DMG	36.8600 121.6500 05/07/1963 36.8600 121.6200 01/07/1981 36.8300 121.5000 04/18/1865 36.8700 121.6300 09/14/1963 36.8700 121.6700 01/04/1961 36.7000 121.4000 11/22/1909 36.8700 121.6000 12/01/1956 36.8000 121.4500 06/24/1939 36.8000 121.4500 03/02/1940	7 748.0 114233.0 2131 0.0 194617.0 03017.0 1521 0.0 141125.0 13 2 0.0 1327 0.0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.067 VI 0.070 VI 0.061 VI 0.109 VII 0.055 VI 0.067 VI 0.063 VI 0.113 VII 0.051 VI	12.9(20.7) 12.9(20.8) 13.4(21.6) 13.6(21.9) 13.6(21.9) 13.7(22.0) 13.8(22.2) 13.9(22.3) 13.9(22.3)
DMG DMG	36.8000 121.4500 03/02/1940 36.7800 121.4300 01/20/1960	32553.0	0.0 4.00 0.0 5.00	0.051 VI 0.086 VII	13.9(22.3) 14.0(22.5)

EARTHQUAKE SEARCH RESULTS -------

11693.001EQSearch

BRK	36.7400 121.3600	0 06/08/1981	3 9 5.0	0.0 4	4.30	0.053	VI	16.4(26.4)
MGI	36.8300 121.4200) 10/25/1912	316 0.0	0.0	4.00	0.045	VI	16.5Č	26.5)
DMG	36.8300 121.4200) 12/31/1910	1211 0.0	0.0	5.00	0.076	VII	16.50	26.5)
DMG	36.8300 121.4200) 12/27/1915	723 0.0	0.0	4.00	0.045	VI	16.50	26.5)
MGI	36.8300 121.4200	0 10/17/1922	530 0.0	0.0	4.00	0.045	VI	16.5Ĉ	26.5)
DMG	36.8300 121.4200	0 09/24/1917	2121 0.0	0.0	4.00	0.045	VI	16.5C	26.5)
DMG	36.8300 121.4200	0 03/11/1911	2130 0.0	0.0	4.50	0.059	VI	16.5(26.5)
GSB	36.9120 121.6630	04/18/1990	145223.8	6.0 4	4.30	0.053	VI	16.5(26.5)
T-A	36.5800 121.9200	06/14/1891	027 0.0	0.0 4	4.30	0.053	VI	16.5(26.6)
T-A	36.5800 121.9200	0 08/13/1887	1117 0.0	0.0 4	4.30	0.053	VI	16.5(26.6)
MGI	36.5800 121.9200	02/28/1915	1044 0.0	0.0 4	4.00	0.045	VI	16.5(26.6)
DMG	36.9000 121.7500	10/25/1935	2056 0.0	0.0	4.00	0.045	VI	16.7(26.8)
GSB	36.8050 121.3900	01/07/2003	222926.9	8.0 4	4.30	0.052	VI	16.8Č	27.0)
GSB	36.9170 121.6750	0 04/18/1990	135351.4	5.0	5.40	0.093	VII	16.9(27.2)

EARTHQUAKE SEARCH RESULTS

Page	-3
------	----

1202									
FILE CODE	LAT.	LONG. WEST	DATE	TIME (UTC) H M Sec	DEPTH (km)	QUAKE MAG.	SITE ACC. g	SITE MM INT.	APPROX. DISTANCE mi [km]
GSB BRK DMG GSB DMG GSB DMG GSB DMG GSB DMG GSB DMG GSB GSB DMG GSB GSB GSB GSB GSB GSB GSB GSB DMG GSB GSB DMG GSB GSB DMG DMG DMG DMG DMG DMG DMG DMG DMG DMG	36.9130 36.6600 36.9180 36.9200 36.9200 36.9200 36.9200 36.9200 36.9200 36.9200 36.9200 36.6720 36.6720 36.6720 36.6720 36.9200 36.9200 36.6700 36.9200 36.9200 36.9200 36.9200 36.9200 36.9200 36.9200 36.9200 36.9200 36.9200 36.9200 36.9200 36.9200 36.9200 36.9200 36.9200 36.9200 36.9200 36.9320 36.9320 36.9320 36.9320 36.9000 36.5000 36.5000 36.5000 36.5000 36.5000 <td< td=""><td>WES1 121.7100 121.3400 121.6700 121.6700 121.6700 121.6700 121.6700 121.6700 121.3350 121.3300 121.3300 121.3300 121.3280 121.3280 121.6800 121.3280 121.6800 121.6800 121.6800 121.6800 121.6800 121.6800 121.6800 121.6800 121.6800 121.6800 121.6800 121.6800 121.4000 121.4000 121.4000 121.4000 121.4000 121.4000</td><td>10/18/1989 09/24/1982 11/19/1969 04/18/1990 09/14/1963 12/17/1953 07/25/1921 04/18/1990 09/08/1990 01/15/1973 03/22/1997 01/08/1932 05/13/1966 02/07/1931 07/02/2001 04/18/1990 04/25/1954 03/11/1910 02/07/1990 07/03/2001 04/06/1915 04/18/1990 12/29/1959 01/06/1931 07/04/1939</td><td>H M Sec 004539.6 8 555.0 62850.0 134138.8 202811.2 51312.0 5 5 0.0 161913.2 124822.3 94329.9 113149.3 181659.0 172555.9 740 0.0 311 7.0 190250.8 173353.7 152816.5 203328.0 652 0.0 141214.9 190716.3 1628 0.0 153651.5 235830.0 095350.4 154603.7 23253.0 232840.0 1049 0 0</td><td>27.0 0.0 0.0 0.0 0.0 0.0 9.0 8.0 0.0 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0</td><td>MAG. 4.00 4.00 4.00 4.20 5.00 4.60 4.20 4.00 4.20 4.00 4.20 4.00</td><td>9 0.044 0.049 0.075 0.060 0.049 0.044 0.049 0.044 0.045 0.048 0.043 0.048 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.044 0.045 0.042 0.042 0.047 0.047 0.047 0.047 0.042 0.047 0.042 0.042</td><td>VI VI VI </td><td>m1 [km] 16.9(27.2) 16.9(27.2) 16.9(27.2) 16.9(27.2) 17.0(27.4) 17.1(27.5) 17.1(27.5) 17.2(27.6) 17.2(27.7) 17.3(27.8) 17.4(28.1) 17.5(28.2) 17.6(28.3) 17.6(28.3) 17.6(28.3) 17.6(28.3) 17.6(28.3) 17.8(28.7) 17.8(28.7) 17.8(28.7) 17.8(28.7) 17.8(28.9) 18.0(29.0) 18.0(29.0) 18.1(29.1) 18.2(29.1) 18.2(29.3)</td></td<>	WES1 121.7100 121.3400 121.6700 121.6700 121.6700 121.6700 121.6700 121.6700 121.3350 121.3300 121.3300 121.3300 121.3280 121.3280 121.6800 121.3280 121.6800 121.6800 121.6800 121.6800 121.6800 121.6800 121.6800 121.6800 121.6800 121.6800 121.6800 121.6800 121.4000 121.4000 121.4000 121.4000 121.4000 121.4000	10/18/1989 09/24/1982 11/19/1969 04/18/1990 09/14/1963 12/17/1953 07/25/1921 04/18/1990 09/08/1990 01/15/1973 03/22/1997 01/08/1932 05/13/1966 02/07/1931 07/02/2001 04/18/1990 04/25/1954 03/11/1910 02/07/1990 07/03/2001 04/06/1915 04/18/1990 12/29/1959 01/06/1931 07/04/1939	H M Sec 004539.6 8 555.0 62850.0 134138.8 202811.2 51312.0 5 5 0.0 161913.2 124822.3 94329.9 113149.3 181659.0 172555.9 740 0.0 311 7.0 190250.8 173353.7 152816.5 203328.0 652 0.0 141214.9 190716.3 1628 0.0 153651.5 235830.0 095350.4 154603.7 23253.0 232840.0 1049 0 0	27.0 0.0 0.0 0.0 0.0 0.0 9.0 8.0 0.0 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	MAG. 4.00 4.00 4.00 4.20 5.00 4.60 4.20 4.00 4.20 4.00 4.20 4.00	9 0.044 0.049 0.075 0.060 0.049 0.044 0.049 0.044 0.045 0.048 0.043 0.048 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.044 0.045 0.042 0.042 0.047 0.047 0.047 0.047 0.042 0.047 0.042 0.042	VI VI	m1 [km] 16.9(27.2) 16.9(27.2) 16.9(27.2) 16.9(27.2) 17.0(27.4) 17.1(27.5) 17.1(27.5) 17.2(27.6) 17.2(27.7) 17.3(27.8) 17.4(28.1) 17.5(28.2) 17.6(28.3) 17.6(28.3) 17.6(28.3) 17.6(28.3) 17.6(28.3) 17.8(28.7) 17.8(28.7) 17.8(28.7) 17.8(28.7) 17.8(28.9) 18.0(29.0) 18.0(29.0) 18.1(29.1) 18.2(29.1) 18.2(29.3)
	36 9320	121.4000	10/18/1939	1049 0.0	12 0	4.00	0.042		10.2(29.5) 18.2(20.3)
DMG	36.8200	121.3700	05/17/1945	15 647 0	0.0	4.60	0.057		18 3(29 4)
DMG	36.5800	121.3300	06/09/1917	334 0.0	0.0	4.00	0.041	¹ 1	18.6(29.9)
DMG	36,9100	121.4800	11/28/1974	23 124 7	0.01	5.20	0.077	l vītl	18.7(30.1)
DMG	36.7500	121.3200	04/11/1942	84059.0	0.0	4.00	0.041	v i	18.7(30.2)

				11693.00	1EQSear	'ch				
DMG	36.8680	121.4080	03/31/1970	7 228.3	11.3	4.54	0.054	VI	18.8(30.2)
DMG	36.8700	121.8800	11/07/1958	213324.0	0.0	4.30	0.048	VI	18.80	30.2)
DMG	36.8800	121.4200	08/10/1947	2158 0.0	0.0	4.40	0.050	VI	18.90	30.4)
GSB	36.5700	121.3270	05/31/1986	084756.1	5.0	4.80	0.062	VI	19.00	30.6)
DMG	36.4800	121.4000	10/15/1942	135356.0	0.0	4.30	0.047	VI	19.1(30.7)
GSB	36.6750	121.3000	12/21/2008	173536.6	7.0	4.00	0.040	v	19.1(30.7)
DMG	36.6800	121.3000	04/09/1961	72316.0	0.0	5.60	0.094	VII	19.1(30.7)
DMG	36.9500	121.6700	03/16/1953	852 6.0	0.0	4.00	0.040	v	19.1(30.8)
DMG	36.4300	121.4800	01/11/1948	53728.0	0.0	4.30	0.047	VI	19.1(30.8)
GSB	36.6760	121.2990	03/23/1999	183640.4	6.0	4.20	0.045	VI	19.2(30.8)
DMG	36.7000	121.3000	04/09/1961	72541.0	0.0	5.50	0.089	VII	19.2(30.9)
DMG	36.7000	121.3000	09/11/1959	18 5 3.0	0.0	4.00	0.040	V	19.2(30.9)
DMG	36.7000	121.3000	03/31/1885	756 0.0	0.0]	5.50	0.089	VII	19.2(30.9)
MGI	36.9500	121.6000	05/26/1937	211 0.0	0.0	4.30	0.047	VI	19.2(31.0)
DMG	36.9200	121.4800	11/29/1974	1 4 7.0	0.0	4.00	0.040	V	19.3(31.1)
DMG	36.9500	121.5900	01/10/1974	112224.8	0.0	4.40	0.049	VI	19.3(31.1)
BRK	36.6300	121.3000	08/11/1982	74643.0	0.0	4.60	0.055	VI	19.3(31.1)
DMG	36.9200	121.4700	12/31/1974	2022 1.1	0.0	4.30	0.046	VI	19.6(31.5)

FILE CODE	LAT. NORTH	LONG. WEST	DATE	TIME (UTC) H M Sec	DEPTH (km)	QUAKE MAG.	SITE ACC. g	SITE MM INT.	APPROX. DISTANCE mi [km]
FILE CODE DMG DMG DMG DMG DMG DMG DMG DMG DMG DMG	LAT. NORTH 36.6000 36.9300 36.9000 36.9000 36.9000 36.9000 36.9590 36.9650 36.6000 36.7500 36.9670 36.6250 36.6470 36.6470 36.5800 36.5800 36.5800 36.9800 36.5800 36.7700 36.7700 36.7700 36.7700	LONG. WEST 121.3000 121.4800 121.4800 121.4200 121.4200 121.5760 121.5760 121.5970 122.0000 121.6000 121.6000 121.2740 121.2680 121.2600 121.6000 121.6000 121.6000 121.6000 121.800 121.2800 121.2700 121.2700 121.2700 121.2700	DATE 11/22/1956 04/08/1942 03/03/1975 10/31/1951 10/30/1951 10/30/1951 10/10/1998 07/17/1997 07/03/1841 06/12/1921 05/14/2002 03/24/1991 09/04/1972 01/18/1999 02/20/1988 06/05/1942 06/07/1944 03/02/1959 03/03/1959 09/30/1950 08/14/1981 04/27/1948 04/27/1948 08/06/1916	(UTC) H M Sec 164358.0 142014.0 113455.0 205819.0 195918.0 195514.0 065031.4 194637.2 22 7 0.0 342 0.0 050029.5 034208.8 18 440.8 084836.7 083957.5 123525.0 123538.0 232717.0 123538.0 232717.0 123538.0 232717.0 123538.0 232717.0 123538.0 23225.0 124959.0 202225.0 1641 8.0 1938 0.0	DEPTH (km) 0.0 0.0 0.0 0.0 0.0 0.0 7.0 13.0 13.0 13.0 13.0 0.0 0.0 30.0 0.0 0.0 0.0 0.0 0.0 0.0	QUAKE MAG. 4 20 4 00 4 20 4 20 4 20 4 20 4 20 4 20	ACC. 9 0.044 0.039 0.043 0.059 0.043 0.041 0.065 0.038 0.062 0.050 0.053 0.044 0.075 0.041 0.037 0.037 0.039 0.041 0.037 0.037 0.039 0.041 0.037 0.037 0.039 0.041 0.037 0.038 0.037 0.037 0.038 0.037 0.037 0.038 0.037 0.038 0.037 0.038 0.037 0.038 0.037 0.038 0.037 0.038 0.037 0.038 0.037 0.038 0.037 0.038 0.037 0.038 0.037 0.038 0.037 0.038 0.037 0.038 0.037 0.038 0.037 0.037 0.037 0.038 0.037 0.038 0.037 0.037 0.038 0.037 0.038 0.037 0.038 0.037 0.038 0.037 0.038 0.038 0.038 0.038 0.037 0.038	MM INT. VI VI VI VI VI VI VI VI VI VI VI VI VI	DISTANCE mi [km] 19.8(31.8) 19.8(31.8) 19.9(32.0) 20.0(32.1) 20.0(32.1) 20.0(32.1) 20.1(32.3) 20.3(32.7) 20.3(32.7) 20.3(32.7) 20.3(32.7) 20.4(32.8) 20.6(33.2) 20.6(33.2) 21.0(33.7) 21.0(33.7) 21.2(34.1) 21.3(34.3) 21.3(34.3) 21.4(34.5) 21.5(34.6) 21.8(35.1) 21.9(35.2)
T-A DMG	36.6700	121.2500 121.2500	04/01/1857 06/27/1916	1135 0.0 1343 0.0	0.0	5.00	0.062	VI V	21.9(35.2) 21.9(35.2)
GSB DMG	36.6410 36.6300	121.2510 121.2510 121.2500	12/28/2001 11/03/1945	203428.9 211402.0 155022.0	0.0 6.0 0.0	4.20 4.60 4.20	0.040 0.050 0.040	V VI V	21.9(35.3) 21.9(35.3) 22.1(35.5)
USG GSB	36.8230 36.8390	121.2900 121.2980	01/26/1986 09/02/1998	234654.5 112407.2	4.8 7.0	4.20 4.00	0.040 0.036	V V	22.2(35.7) 22.3(35.9)

				11693.00	1EQSear	rch				
GSB	36.9880	121.7470	08/06/1984	000639.6	10.0	4.00	0.036	V	22.4(36.1)
GSB	36.9920	121.7320	01/11/1994	105351.4	12.0	4.30	0.042	VI	22.5(36.2)
GSB	36.8100	121.2750	01/26/1986	192051.2	7.0	5.50	0.078	VII	22.5(36.3)
DMG	37.0000	121.6000	03/03/1959	72346.0	0.0	4.40	0.044	VI	22.70	36.5)
MGI	37.0000	121.6000	09/28/1900	1217 0.0	0.0	4.00	0.035		22.70	36.5)
GSB	36.9820	121.7880	10/25/1989	220149.8	14.0	4.00	0.035		22.70	36.5)
GSB	30.9030	121.8430	10/19/1989 01/17/1066	101435.1	13.0	4.60	0.048	I VI I	22.80	36.7)
	36 9800	121.4900	101/17/1900 10/22/1080	2 320.0	15 0	4.10	0.037		22.80	30.7)
GSB	36 9760	121.0020	12/13/1905	142437.2	7 0	4.10	0.037		22.90	26 8
MGT	37 0000	121 5700	12/13/133 101/09/1928			5 30	0.070		22.90	36 9)
T-A	37.0000	121.5700	03/25/1859		0.0	5.00	0.060	VT I	22.90	36.9)
DMG	36.6500	121.2300	10/19/1956	1232 3.0	0.0	4.10	0.037	Î	23.00	37.1)
GSB	36.9630	121.8530	10/19/1989	084549.9	12.0	4.00	0.035	l v l	23.00	37.1)
GSB	36.8400	121.2830	04/30/1987	192422.2	7.0	4.10	0.037	1 v 1	23.1(37.1)
GSB	36.9950	121.7630	10/18/1989	021549.9	4.0	4.50	0.045	VI	23.1(37.2)
BRK	36.5900	121.2400	08/10/1982	21129.0	0.0	4.50	0.045	VI	23.2(37.3)
GSB	36.9790	121.4670	08/06/1997	110437.3	7.0	4.00	0.035	V	23.3(37.4)
GSB	36.9810	121.4720	12/13/1995	062554.2	4.0	4.10	0.037	V	23.3(37.5)
DMG	36.6/00	121.2200	04/16/1932	184810.0	0.0	4.50	0.045	VI	23.50	37.9)
DMG	36.6000	121.2300	09/28/195/	21 439.0	0.0	4.50	0.045	IVI	23.50	37.9)
DMG	37.0000	121.7700	06/22/194/	2330 0.0	0.0	4.70	0.050	IVI	23.6(37.9)

EARTHQUAKE SEARCH RESULTS

				11693.00	1EQSear	rch			
GSB	36.5930	121.1960	07/12/1995	215800.5	7.0	4.00	0.032	V	25.5(41.0)
GSB	36.3850	121.9330	02/10/1984	072324.4	6.0	4.30	0.038	V	25.5(41.1)
DMG	36.5630	121.2050	06/22/1973	12912.2	9.6	4.16	0.035	V	25.5(41.1)
GSB	37.0280	121.7800	10/18/1989	022606.7	12.0	4.20	0.036	V	25.6(41.2)
DMG	37.0200	121.4800	03/14/1949	61015.0	0.0	4.40	0.040	V	25.6(41.2)
DMG	37.0200	121.4800	03/09/1949	122839.0	0.0	5.20	0.061	VI	25.6(41.2)
BRK	37.0100	121.4500	08/09/1979	7 320.0	0.0	4.20	0.036	V	25.6(41.2)
GSB	36.3620	121.9000	01/24/1984	010038.2	5.0	4.00	0.032	V	25.7(41.4)
GSB	36.3680	121.9130	01/23/1984	054857.2	5.0	4.10	0.034	V	25.8(41.5)
GSB	36.3630	121.9100	01/23/1984	065950.4	5.0	5.00	0.054	VI	26.0(41.8)
MGI	36.6200	122.1100	10/22/1926	144149.5	0.0	4.00	0.032	V	26.0(41.9)
GSB	36.8100	121.2030	08/28/1994	012236.7	7.0	4.00	0.032	V	26.2(42.2)
DMG	37.0000	121.4000	06/18/1935	415 0.0	0.0	4.00	0.032	V	26.3(42.3)
GSB	36.8150	121.2030	09/22/1995	160618.1	7.0	4.30	0.037	V	26.3(42.4)
GSB	37.0250	121.4580	01/16/1993	062934.9	5.0	5.30	0.063	VI	26.4(42.4)
DMG	37.0400	121.7800	09/07/1967	123917.2	0.0	4.70	0.046	VI	26.4(42.4)
GSB	36.5840	121.1800	08/27/2011	071821.2	7.0	4.70	0.045	VI	26.5(42.6)
DMG	36.5800	121.1800	07/29/1951	105345.0	0.0	5.00	0.053	VI	26.6(42.7)
GSB	36.5770	121.1770	08/30/2004	043057.0	9.0	4.00	0.031	V	26.8(43.1)
DMG	37.0600	121.6900	11/16/1964	24641.7	0.0	5.00	0.053	VI	26.8(43.1)
DMG	36.4500	121.2500	09/27/1938	1223 0.0	0.0	5.00	0.053	VI	26.8(43.1)
GSB	36.5840	121.1740	10/11/1993	071945.2	6.0	4.10	0.033		26.8(43.2)
GSB	37.0390	121.4790	06/15/1998	015922.4	8.0	4.00	0.031		26.8(43.2)
GSB	36.5770	121.1750	09/27/1995	164442.3	9.0	4.20	0.035		26.9(43.3)
GSB	37.0430	121.8070	10/18/1989	002504.9	5.0	4.80	0.047	VI	27.0(43.5)
DMG	36.5800	121.1700	10/22/1949	214520.0	0.0	4.70	0.045	VI	27.1(43.6)

EARTHQUAKE SEARCH RESULTS

-340

Page 6

FILE CODE	 LAT. NORTH	 LONG. WEST	DATE	TIME (UTC) H M Sec	DEPTH (km)	QUAKE MAG.	SITE ACC. g	SITE MM INT.	APPROX. DISTANCE mi [km]
GSB DMG GSB DMG GSB DMG DMG DMG DMG DMG DMG GSB DMG DMG GSB DMG T-A T-A T-A	36.5580 36.7800 36.5000 37.0570 36.5500 37.0600 37.0360 37.0360 37.0360 37.0360 37.0360 37.0470 36.5000 37.0470 36.8000 37.0500 37.0500 37.0500 37.0500 37.0500 37.0500 37.0500 37.0000 37.0780 37.0780 37.0700 37.0000 37.0000 37.0000 37.0000 37.0000 37.0000 37.0000	121.1750 122.1200 121.2000 121.7970 121.1600 121.8130 121.8830 121.1700 122.1400 121.7500 121.7500 121.8770 121.8770 121.8770 121.8950 121.8950 121.8950 121.8950 121.8000 121.8300 121.8300 122.0000 122.0000	07/26/1988 11/15/1947 09/18/1937 11/02/1989 05/13/1964 10/30/1989 03/27/1954 03/08/1971 05/28/1941 10/21/1989 05/27/1936 03/06/1882 03/09/1971 10/26/1989 02/04/1942 03/26/1866 02/26/1864 10/25/1989 11/25/1919 06/30/1858	032655.9 222936.0 13290.0 055011.0 121837.2 11713.7 000415.2 154331.0 183146.5 62318.0 004943.7 19550.0 21450.0 153516.2 090129.3 9824.0 20120.0 13470.0 012726.6 1130.0 20300.0 000.0 8400.0	$\begin{array}{c} 2.0\\ 0.0\\ 12.0\\ 12.0\\ 13.0\\ 13.0\\ 13.0\\ 18.5\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 14.0\\ 0.0\\ 0.0\\ 14.0\\ 0.0\\ 0.0\\ 14.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ $	$\begin{array}{c} 4.70\\ 4.10\\ 4.00\\ 4.90\\ 4.00\\ 4.00\\ 4.10\\ 7.00\\ 4.10\\ 4.40\\ 4.10\\ 4.50\\ 4.60\\ 4.50\\ 4.60\\ 4.50\\ 5.70\\ 4.60\\ 4.00\\ 5.40\\ 5.90\\ 5.00\\ 4.50\\ 5.00\\ 4.30\\ 4.30\\ 4.30\\ \end{array}$	0.045 0.032 0.031 0.049 0.030 0.032 0.145 0.037 0.031 0.039 0.040 0.038 0.072 0.040 0.029 0.029 0.029 0.029 0.029 0.040 0.029 0.029 0.040 0.029 0.040 0.029 0.040 0.029 0.040 0.029 0.040 0.029 0.040 0.029 0.040 0.029 0.040 0.029 0.040 0.029 0.040 0.029 0.040 0.029 0.040 0.029 0.040 0.029 0.040 0.029 0.040 0.029 0.040 0.029 0.040 0.029 0.040 0.037 0.037 0.037 0.031 0.038 0.032 0.037 0.039 0.040 0.038 0.037 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.037 0.037 0.039 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.034 0.034	VI VI VI VI VI VI VI VI VI VI VI VI VI V	27.2(43.8) 27.3(43.9) 27.4(44.1) 27.8(44.7) 28.2(45.4) 28.2(45.4) 28.3(45.5) 28.4(45.7) 28.5(45.9) 28.6(46.1) 28.8(46.3) 28.9(46.6) 29.1(46.9) 29.3(47.1) 29.5(47.5) 29.5(47.5) 29.5(47.5) 29.5(47.6) 29.9(48.1) 29.9(48.1) 29.9(48.1)

Page 7

2.8

				11693.00	1EOSear	°ch				
T-A	37.0000	122.0000	12/28/1885	1130 0.0	0.01	4.30	0.034	i vi	29.9(48.1)
MGI	37.0000	122.0000	12/11/1919	2327 0.0	0.0	4.00	0.029	i v i	29.9(48.1)
MGI	37.0000	122.0000	11/03/1916	930.0	0.0	4.00	0.029	V	29.9(48.1)
T-A	37.0000	122.0000	11/17/1868	2130 0.0	0.0	4.30	0.034	V	29.9(48.1)
DMG	37.0000	122.0000	02/12/1938	20 014.0	0.0	4.50	0.037	V	29.9(48.1)
MGI	37.0000	122.0000	07/17/1933	032 0.0	0.0	4.30	0.034	V	29.9(48.1)
T-A	37.0000	122.0000	09/02/1893	716 0.0	0.0	4.30	0.034	V	29.9(48.1)
DMG	37.0000	122.0000	11/12/1937	250 0.0	0.0	4.00	0.029	V	29.9(48.1)
DMG	37.0000	122.0000	04/23/1934	16 8 0.0	0.0	4.00	0.029	V	29.9(48.1)
T-A	37.0000	122.0000	04/03/1860	4 0 0.0	0.0	4.30	0.034	V	29.9(48.1)
DMG	36.5700	122.1700	10/22/1926	133522.0	0.0	6.10	0.087	VII	30.0(48.2)
GSG	37.0970	121.5140	09/13/1995	203646.6	8.0	4.20	0.032	V	30.1(48.5)
GSB	37.0570	121.9050	10/21/1989	221457.0	13.0	4.90	0.046	VI	30.1(48.5)
DMG	36.5300	121.1300	11/03/1960	65024.0	0.0	4.10	0.030	V	30.2(48.6)
DMG	36.6500	122.1900	08/04/1970	41421.4	0.0	4.70	0.041	V	30.20	48.6)
BRK	36.8200	121.1300	03/17/1976	4 152.0	0.0	4.30	0.033	V	30.20	48.6)
PAS	36.7330	121.1020	11/28/1985	151354.7	6.0	4.90	0.046	VI	30.30	48.8)
GSB	37.0580	121.9150	11/05/1989	133734.3	15.0	4.50	0.037	V	30.40	49.0)
DMG	37.0300	121.9700	04/14/1941	161654.0	0.0	4.00	0.028	V	30.50	49.0)
GSB	37.0620	121.9080	10/18/1989	041633.0	16.0	4.10	0.030	V	30.50	49.1)
BRK	37.1000	121.5000	08/06/1979	17 522.0	0.0	5.80	0.073	VII	30.50	49.1)
DMG	37.1000	121.8000	05/24/1865	1121 0.0	0.0	5.50	0.062	VI	30.70	49.3)
DMG	37.1000	121.8000	09/17/1888	1151 0.0	0.0	4.50	0.037	V	30.70	49.3)
GSB	37.1020	121.4920	06/15/2006	122451.1	3.0	4.30	0.033		30.80	49.5)
DMG	36.8000	122.1800	04/16/1971	125831.7	0.0	4.50	0.036		30.90	49.7)
DMG	36.4000	121.2000	07/22/1961	18 155.0	0.0	4.00	0.028		31.10	50.0)
DMG	36.4000	121.2000	09/16/1938	611 0.0	0.0	4.00	0.028		31.10	50.0
BRK	36.5700	121.0900	10/13/1980	24654.0	0.0	4.00	0.027		31.60	50.8)
DMG	36.5290	121.1030	02/2//1972	2213 8.4	11.4	4.62	0.038		31.70	50.9)
DMG	37.1300	121.5700	01/29/1959	164123.0	0.0	4.30	0.032	V	31.8(51.1)

Page 7

.....

						1 1	CTTE	ISTTE	
FTLF	ιάτ	LONG	DATE		DEPTH	OLIAKE			DISTANCE
CODE	NORTH	WEST	DATE	H M Sec	(km)	MAG.	a	TNT	mi [km]
	+	+	, +	+		++		+	
GSB	37.1220	121.5120	06/20/1988	152638.2	7.0	4.20	0.030	i vi	31.8(51.2)
GSB	37.0770	121.9250	11/05/1989	013042.4	15.0	4.20	0.030	v	31.9(51.3)
BRK	37.1000	121.8700	04/25/1981	194137.0	0.0	4.10	0.029	V	32.0(51.4)
DMG	36.3000	121.3000	07/23/1956	8 348.0	0.0	4.70	0.039	V	32.1(51.7)
GSB	37.1380	121.5700	04/26/1984	062951.9	5.0	4.00	0.027	V	32.3(52.0)
GSG	36.5190	121.0930	04/01/2006	122559.8	1.0	4.30	0.032	V	32.4(52.1)
DMG	37.1000	121.9000	08/08/1916	1650 0.0	0.0	4.00	0.027	V	32.6(52.5)
DMG	37.1000	121.9000	04/15/1889	328 0.0	0.0	4.80	0.041		32.6(52.5)
DMG	36.4500	121.1200	10/11/1959	2 3 9.0	0.0	4.10	0.028		33.0(53.0)
BRK	36.5800	121.0600	08/08/1983	1313 9.0	0.0	4.00	0.02/	V	33.0(53.2)
GSB	37.1500	121.5820	01/19/198/	080904.4	/.0	4.30	0.031		33.1(53.2)
GSB	37.0930	121.9420	10/20/1989	001820.8	12.0	4.30	0.031		33.3(53.5)
BRK	36.9000	122.1800	07/02/1978	115/5/.0	0.0	4.20	0.029		33.5(53.8)
MGI	37.0000	122.1000	04/29/1908	841 0.0	0.0	4.00	0.026		33.8(54.3)
MGI	37.0000	122.1000	01/08/1907	2345 0.0	0.0	4.60	0.036		33.8(54.3)
GSB	37.1300	121.8/80	06/2//1988	184322.3	13.0	5.70	0.064		34.0(54.8)
BRK	36.5100	121.0600	06/19/1982	101/33.0	0.0	4.10	0.027		34.3(55.3)
DMG	37.1700	121.5200	11/08/1945	20 91/.0	0.0	4.20	0.028		35.0(56.3)
DMG	36.1700	121.5300	02/22/1937	11810 0.0	0.0	4.00	0.025		35.3(56.9)

				11693.00	1F0Sear	-ch				
GSB	37.1230	121.9630	10/18/1989	003041.4	5.0	4.20	0.028	ΙVI	35.6(57.4)
GSB	37.1300	121.9520	08/08/1989	081327.5	15.0	5.30	0.050	VI	35.8(57.6)
GSB	37.1350	121.9450	08/08/1989	084410.0	13.0	4.50	0.032	V	35.9(57.8)
DMG	37.1800	121.8000	04/10/1954	221653.0	0.0	4.10	0.026	V	36.0(57.9)
GSB	37.0920	122.0420	12/29/1998	123812.4	10.0	4.00	0.025	V	36.3(58.4)
DMG	36.3500	121.1200	09/21/1958	72455.0	0.0	4.60	0.034	V	36.7(59.1)
DMG	36.4300	121.0500	11/17/1969	204919.5	0.0	4.40	0.030	V	37.00	59.6)
DMG	37.2000	121.5000	07/06/1899	2010 0.0	10.0	5.80	0.063	VI	37.20	59.9)
GSB	37.1500	121.9/30	08/08/1989	155328.4	12.0	4.80	0.037		37.50	60.4)
DMG	36.5000	121.0000	00/10/1934		0.0	4.00	0.024		37.70	60.7)
	26 2000		102/10/1940	1024 0 0		4.20	0.027		27 00	60.7
	36 2000	121.3000	03/13/1930 05/10/1038	10/1 0 0	0.0	4.00	0.024		37.90	61.0)
DMG	36 2000	121.3000	05/10/1938			4 50	0.024		37 90	61 0
DMG	37,2300	121.6100	09/28/1967	153836 1	0.0	4,90	0.038	l v l	38.50	61.9)
DMG	37.0200	122,2000	10/24/1926	225149 5	0.0	5.50	0.052	l vi l	38.90	62.6)
GSB	37.1630	121.9950	10/18/1989	032357.0	22.0	4.00	0.023	IV	38.90	62.6)
DMG	36.9500	122.2600	02/15/1927	2354 3.5	0.0	5.00	0.040	i vi	39.0Č	62.7)
DMG	36.6100	122.3500	10/22/1926	1235 7.0	0.0	6.10	0.070	VI	39.3(63.2)
DMG	37.1700	122.0000	11/09/1914	231 0.0	0.0	5.50	0.051	VI	39.5(63.5)
DMG	37.2500	121.6700	07/09/1958	52340.0	0.0	4.10	0.024	V	39.8(64.1)
DMG	36.4200	121.0000	11/26/1929	8 5 0.0	0.0	4.50	0.030	V	39.8(64.1)
GSB	37.1500	122.0530	10/18/1989	003828.8	20.0	4.30	0.027		39.90	64.1)
DMG	37.2500	121.7500	07/01/1911	22 0 0.0	0.0	6.60	0.090	VII	40.20	64.7)
GSB	37.2580	121.6620		095643.4	4.0	4.10	0.024		40.40	64.9)
DMG	36.4000		04/12/1885	4 5 0.0	10.0	0.20	0.072		40.50	65.1)
GSG	30.4333	120.9/10	01/20/2015	165620 8	10.0	4.43	0.028		40.90	65.8)
GSB MCT	37.2000	121.0100	00/03/1984	1736 0 0	0.0	4.20	0.025		41.1	66 1)
MGT	37.2000	122.0000	12/30/1933	1355 0.0		4.30	0.020		41.30	66(4)
GSB	37 1930	122.0000	10/18/1080	045027 7	14 0	4 30	0.020	l v l	41 30	66 5)
DMG	37.2700	121 7200	03/24/1959	22113 0	0.0	4 10	0.024	ΤV	41.40	66.6
GSB	37.2770	121.6700	04/27/1984	164834.1	10.01	4.00	0.022	i iv l	41.70	67.1)
DMG	37.2700	121.8000	08/27/1945	913 4.0	0.0	4.50	0.029	i v i	42.1(67.7)

FILE CODE	LAT.	LONG. WEST	DATE	TIME (UTC) H M Sec	DEPTH (km)	QUAKE MAG.	SITE ACC. g	SITE MM INT.	APPROX. DISTANCE mi [km]	
GSB GSB GSB GSB GSB GSB GSB GSB DMG BRK MGI MGI	37.2850 37.2260 37.2870 37.2870 37.1000 37.1000 37.2880 37.1830 36.0800 37.2950 37.2080 37.2080 37.3000 37.3000 37.3000 37.3000	121.6150 121.9750 121.6580 121.6680 121.6900 122.2000 121.6970 122.0800 121.8620 121.6670 122.0450 121.6700 121.6800 121.6000 121.6000	03/30/2009 11/12/1973 01/08/2011 05/03/1984 12/30/1988 03/26/1884 08/17/1990 10/20/1989 07/08/1986 09/03/1986 12/02/1989 06/10/1949 05/08/1979 12/11/1901 08/27/1904	$\begin{array}{c} 174029.3\\ 181713.3\\ 001016.7\\ 130711.8\\ 235424.4\\ 040\ 0.0\\ 022617.2\\ 081254.2\\ 004022.9\\ 043114.8\\ 20020.8\\ 3\ 640.0\\ 511\ 7.0\\ 2158\ 0.0\\ 205847.0\\ \end{array}$	$\begin{array}{c} 7 & 0 \\ 12 & 9 \\ 10 & 0 \\ 7 & 0 \\ 5 & 0 \\ 16 & 0 \\ 14 & 0 \\ 10 & 0 \\ 11 & 0 \\ 0$	$\begin{array}{c} 4.30\\ 4.01\\ 4.10\\ 4.40\\ 4.30\\ 5.90\\ 4.00\\ 4.00\\ 4.00\\ 4.20\\ 4.00\\ 4.60\\ 4.80\\ 4.00\\ 4.60\\ 4.60\\ 4.60\\ 4.60\\ \end{array}$	$\begin{array}{c} 0.026\\ 0.022\\ 0.023\\ 0.027\\ 0.026\\ 0.026\\ 0.060\\ 0.022\\ 0.022\\ 0.022\\ 0.027\\ 0.024\\ 0.022\\ 0.030\\ 0.033\\ 0.022\\ 0.030\\ 0.030\\ \end{array}$	V IV V VI IV V IV V IV V IV V	42.2(68.0) 42.3(68.0) 42.4(68.2) 42.4(68.2) 42.4(68.3) 42.5(68.4) 42.5(68.4) 42.6(68.5) 42.7(68.7) 42.9(69.1) 43.0(69.2) 43.3(69.7) 43.3(69.7) 43.3(69.7)	
	Page 9									

				11693 00	1F05eau	rch			
MGI	37.30001121	1.75001	03/11/1936	1356 0 0	$\hat{0}$	4 301	0 025	l v l	43 6(70 2)
GSB	36.7770 120	8670	01/06/1988	224948 3	6.0	4 20	0.024	τv	
GSB	37.2270 122	0370	11/07/1989	234237 7	11 0	4 30	0.025		
BRK	36,6800 120	8500	$\frac{12}{02}$ $\frac{05}{1983}$	12 127 0		4 20	0 024	тv	
DMG	37.3000 121	8000	08/03/1903	649 0 0		5 50	0.027	VT	
DMG	37.3000 121	8000	01/02/1891			5 50	0.047		
DMG	37,2000 122	1000	$\frac{02}{17}$	2012 0 0	0.0	5 80	0.055		
GSG	37.3130 121	6750	08/11/1993	223304 0	9.0	4 80	0.032	V V	
GSB	37.1980 122	1050	10/18/1989	004124 7	19 0	5 10	0 038	v	44 2(71 2)
GSB	36.0350 121	5600	$\frac{10}{02}/04/1991$	163836 2	13 0	4 70	0 031	Ň	44 3(71 4)
DMG	37.2500 122	0000	07/19/1925	1924 0.0	24 0	4 00	0 021	τv	
GSB	37.3200 121	6980	04/24/1984	211519.0	8.0	6.20	0.067	VT	44 7 72 0
DMG	37.1700 122	.1700	12/28/1914	1042 0.0	0.0	4.50	0.027	ν,	44 9(72 2)
GSB	37.3230 121	.7250	02/08/1988	140915.3	6.0	4.00	0.021	тv	45.1(72.5)
GSG	36.6255 120	.8337	09/28/2014	204513.3	7.6	4.43	0.026	i v i	45.1(72.5)
T-A	37.3300 121	. 6700	01/15/1890	13 5 0.0	0.0	4.30	0.024	l v l	45.3(73.0)
T-A	37.3300 121	6700	03/08/1912	948 0.0	0.0	4.30	0.024	l v l	45.3(73.0)
T-A	37.3300 121	6700	06/28/1891	11 3 0.0	0.0	4.30	0.024	i vi	45.3(73.0)
DMG	37.3300 121	6700	04/03/1924	2354 0.0	0.0	4.50	0.027	V	45.3(73.0)
T-A	37.3300 121	6700	11/04/1888	1136 0.0	0.0	4.30	0.024	V I	45.3(73.0)
T-A	37.3300 121	6700	10/12/1887	855 0.0	0.0	4.30	0.024	V	45.3(73.0)
T-A	37.3300 121	6700	02/05/1892	1428 0.0	0.0	4.30	0.024	V	45.3(73.0)
DMG	37.3300 121	. 6800	06/22/1949	18 846.0	7.0	4.10	0.022	IV	45.4(73.0)
DMG	37.3000 121	. 9000	04/21/1904	1150 0.0	0.0	4.00	0.021	IV	45.5(73.2)
DMG	37.3000 121	. 9000	10/08/1865	2046 0.0	0.0	6.30	0.070	VI	45.5(73.2)
MGI	37.3000 121		05/28/1927	1739 0.0	0.0	5.00	0.035	V	45.5(73.2)
MGI	37.3000 121	.9000	04/04/1905	1023 0.0	0.0	4.00	0.021	IV	45.5(73.2)
GSB	37.3330 121	. 6990	02/25/2001	231822.5	7.0	4.50	0.027		45.6(73.4)
DMG	37.33001221		10/26/191/	920 0.0	0.0	4.00	0.021	IV	45.7(73.5)
USG	37.3380 121	. 69/0	09/26/1984	2046 6.0	9.5	4.50	0.027		46.0(74.0)
GSB	37.34001221	./320	09/26/1984	204606.2	6.0	4.40	0.025		46.3(/4.4)
MGT	37.3300 IZI	.82001	09/02/192/1	0 0 0.0	0.0	4.60	0.028	V	46.3(74.6)
DMG		.08001	00/14/1932	94417.01	15.0	4.50	0.027		46.5(74.8)
		7240	07/23/1920	1/5/49.01	12.0	3.00	0.034		47.1(75.8)
RPK	37 3600 121	7200	03/21/1990	01446 0	6.0	4.70	0.029		47.5(70.5)
$T = \Delta$	37 3300 121	9200	00/23/13/01	2025 0 0	0.0	4.10	0.021		47.0(70.0)
τ-Δ	37 3300 121	9200	04/04/1850	21 0 0 0	0.0	4 30	0.023		47 8 76 0
	121.22001171	. 52001		TT 0 0.01	0.01	1.201	0.023		77.0(70.9)

•

Page	9								
FILE CODE	 LAT. NORTH	LONG. WEST	DATE	TIME (UTC) H M Sec	DEPTH (km)	QUAKE MAG.	SITE ACC. g	SITE MM INT.	APPROX. DISTANCE mi [km]
T-A DMG MGI T-A DMG GSB DMG BRK GSB DMG GSB	37.3300 37.3300 37.3300 37.3700 37.3700 37.3730 37.3800 37.3800 37.3800 37.3850 36.7800 36.3110	121.9200 121.9200 121.9200 121.7800 121.7570 121.6800 121.7200 121.7200 121.7720 120.7500 120.8560	08/30/1873 06/10/1931 09/09/1920 08/11/1859 09/05/1955 11/10/1988 09/18/1941 01/15/1981 06/13/1988 04/22/1932 10/21/2012	$\begin{array}{c} 0 & 0 & 0 & 0 \\ 1220 & 0 & 0 \\ 1647 & 0 & 0 \\ 530 & 0 & 0 \\ 2 & 118 & 0 \\ 050803 & 0 \\ 733 & 0 & 0 \\ 124751 & 0 \\ 014536 & 8 \\ 0 & 816 & 0 \\ 065509 & 5 \end{array}$	0.0 0.0 0.0 7.0 0.0 7.0 0.0 7.0 0.0 9.0	$\begin{array}{c} 4.30\\ 4.00\\ 4.00\\ 5.50\\ 4.80\\ 4.80\\ 4.00\\ 4.80\\ 5.40\\ 5.30\\ \end{array}$	0.023 0.020 0.023 0.043 0.030 0.020 0.030 0.041 0.019 0.038	IV IV IV IV VI V V V V V V V V V V	47.8(76.9) 47.8(76.9) 47.8(76.9) 47.8(76.9) 48.7(78.3) 48.7(78.3) 48.7(78.3) 48.8(78.5) 48.9(78.8) 49.6(79.8) 50.1(80.6) 50.4(81.2)

177

				11603 00	150502	rch			
DMG GSB DMGI GSB DMG GSB DMG GSB DMG GSB DMG GSB DMG GSB DMG GSB DMG GSB GSG GSG DMG GSB GSG GSG GSG GSG GSG GSG GSG GSB CMG GSB CMG CMG CMG CMG CMG CMG CMG CMG CMG CMG	36.0000 37.3950 35.9500 36.1500 37.4030 37.4000 37.4270 37.4220 37.4220 37.4200 37.4220 37.1900 37.4340 36.8000 37.4350 36.1700 36.0000 37.4550 37.4550 37.4500 37.4580 37.4580 37.4580 37.4580 37.4810 37.4810 37.4810 35.8652 37.35000 37.4810 35.8652 37.35000 37.4810 35.8652 37.35000 37.4810 35.8652 37.35000 37.4800 37.40000 37.40000 37.40000 37.40000 37.40000 37.400000 37.4000000000000000000000000000000000000	122.0000 121.4870 121.5000 121.0000 121.7880 120.7880 121.7000 121.7630 121.7000 121.7950 120.9500 121.7740 120.7000 121.7790 120.9200 121.7790 120.9200 121.7790 121.7700 121.7000 121.7000 121.3300 121.68000 121.8000 121.7800 121.7800 121.7800 121.7800 121.7800 121.0000 121.0000 121.0000 121.0000 121.0000	06/27/1932 02/05/2005 12/03/1934 11/03/1937 07/09/1989 01/12/1990 04/10/1881 04/20/1991 07/01/1990 10/26/1943 04/03/1989 06/18/1975 10/31/2007 12/05/1937 10/31/2007 05/23/1936 10/24/1916 09/12/1912 02/28/1987 07/29/1954 08/19/1974 12/29/1986 02/11/1930 05/22/1963 03/31/1986 10/31/1957 12/01/1938 01/07/2010 02/27/2014 10/31/1957 12/01/1938 02/26/1932 06/30/1935 10/20/1942 10/18/1942	11693.00 51725.0 184330.4 1540.0 1000.0 133844.5 091023.1 1000.0 194153.4 003641.6 45033.0 174634.4 175019.0 030454.8 1370.0 225424.5 4410.0 13300.0 17270.0 162428.3 85136.0 124719.1 152804.9 21210.0 22414.8 115540.0 02614.0 185230.0 19476.0 16580.0 23280.0 10250.0 1242.0	1EQSeat 0.0 7.0 0.0 5.0 14.0 0.0 5.0 7.0 12.0 9.0 0.0 12.0 9.0 0.0 12.0 9.0 0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	rch 4.00 4.10 4.50 4.20 5.90 4.20 4.00 4.30 4.30 4.30	0.019 0.020 0.025 0.022 0.019 0.021 0.020 0.022 0.023 0.018 0.025 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.020 0.022 0.023 0.020 0.020 0.020 0.020 0.020 0.020 0.022 0.023 0.018 0.025 0.020 0	IV IV IV IV IV IV IV IV IV IV IV IV IV I	50.5(81.3) 50.6(81.4) 50.9(81.9) 51.0(82.0) 51.0(82.1) 51.0(82.1) 52.1(83.8) 52.1(83.9) 52.1(83.9) 52.3(84.1) 52.3(84.2) 52.4(84.3) 53.0(85.3) 53.0(85.3) 53.1(85.4) 53.2(85.6) 53.5(86.1) 53.5(86.1) 53.4(87.0) 54.4(87.5) 54.4(87.5) 54.4(87.5) 54.4(87.5) 54.4(87.5) 54.4(87.5) 54.4(87.5) 54.4(87.5) 54.4(87.5) 54.4(87.5) 54.4(87.5) 54.4(87.5) 54.4(87.5) 54.4(87.5) 54.4(87.5) 54.4(87.5) 54.4(90.7) 56.4(90.8) 57.7(92.8) 58.7(94.5) 58.7(94.5) 58.7(94.5)
DMG DMG DMG MGI	37.5000 36.0000 36.0000 36.0000	$121.8000 \\ 121.0000 \\ 121.0000 \\ 121.0000 \\ 121.0000 $	12/01/1938 02/26/1932 06/30/1935 10/20/1942	161/ 0.0 1658 0.0 2328 0.0 1025 0.0	0.0 0.0 0.0 0.0	4.50 5.00 4.00 4.30	0.022 0.029 0.017 0.020	IV V IV IV	57.7(92.8) 58.7(94.5) 58.7(94.5) 58.7(94.5) 58.7(94.5)
MGI DMG MGI T-A DMG	36.0000 37.5000 36.3300 37.4200 36.4200	121.0000 121.9000 120.6700 122.1700 120.6200	10/18/1942 11/26/1858 07/31/1919 02/00/1888 04/15/1962	$\begin{array}{c} 12 & 142.0 \\ 835 & 0.0 \\ 2131 & 0.0 \\ 12 & 0 & 0.0 \\ 841 & 2.3 \\ 841 & 2.3 \\ 841 & 2.3 \end{array}$	$\begin{array}{c} 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 21.0 \\ 0.0 \end{array}$	4.30 6.10 4.00 4.30 4.70	0.020 0.051 0.017 0.020 0.024	IV VI IV IV V	58.7(94.5) 58.8(94.6) 59.1(95.1) 59.1(95.1) 59.5(95.7) 59.7(96.1)
DMG BRK DMG	37.5000 35.8400 35.8000	121.3000 121.3300 121.5000	07/15/1866 08/29/1983 12/20/1948	630 0.0 101031.0 44246.0	0.0 0.0 0.0	4.70 5.80 5.20 4.50	0.024 0.043 0.031 0.022	VI VI VI IV	60.1(96.1) 60.2(96.8) 60.2(96.8) 60.9(97.9)

Page	10								
FILE CODE	LAT. NORTH	LONG. WEST	DATE	TIME (UTC) H M Sec	DEPTH (km)	QUAKE MAG.	SITE ACC. g	SITE MM INT.	APPROX. DISTANCE mi [km]
GSB PAS DMG BRK DMG DMG GSB	35.8280 36.0360 36.0000 37.5600 35.8700 36.0000 37.5140	121.3230 120.8810 120.9300 121.6600 122.1200 120.9200 121.2620	09/17/1991 11/24/1985 03/02/1955 08/24/1980 01/29/1957 11/02/1955 09/07/1994	211029.3 192139.8 1559 1.0 124117.0 211953.0 1940 6.0 190959.9	8.0 6.0 0.0 0.0 0.0 3.0	5.10 4.40 4.80 4.00 4.90 5.20 4.10	$\begin{array}{c} 0.029\\ 0.020\\ 0.025\\ 0.016\\ 0.026\\ 0.031\\ 0.017\\ \end{array}$	V IV V V V V V	61.1(98.3) 61.2(98.4) 61.2(98.5) 61.2(98.5) 61.5(98.9) 61.6(99.1) 61.7(99.4)

11693.001EQSearch GSB |37.5680|121.6650|12/11/1986|141805.3| 4.0| 4.10| 0.017 | IV | 61.8(99.4) -END OF SEARCH- 485 EARTHQUAKES FOUND WITHIN THE SPECIFIED SEARCH AREA. TIME PERIOD OF SEARCH: 1800 TO 2016 LENGTH OF SEARCH TIME: 217 years THE EARTHQUAKE CLOSEST TO THE SITE IS ABOUT 1.4 MILES (2.3 km) AWAY. LARGEST EARTHQUAKE MAGNITUDE FOUND IN THE SEARCH RADIUS: 7.0 LARGEST EARTHQUAKE SITE ACCELERATION FROM THIS SEARCH: 0.284 g COEFFICIENTS FOR GUTENBERG & RICHTER RECURRENCE RELATION: a-value= 3.525 b-value= 0.793 beta-value= 1.826

TABLE OF MAGNITUDES AND EXCEEDANCES:

Earthquake	Number of Times	Cumulative
Magnitude	Exceeded	No. / Year
4.0	485	2.24537
4.5	185	0.85648
5.0	79	0.36574
5.5	39	0.18056
6.0	11	0.05093
6.5	3	0.01389
7.0	2	0.00926

Longitude: -121.64495 Edition: Dynamic, Conterminous U.S. 2008 (v3.3.1) Site Class: D/E Boundary, 180m/s

Summary Statistics for, Deaggregation: Total

Deaggregation targets

Return period: 2475 yrs Exceedance rate: 0.0004040404 yr⁻¹ PGA Ground Motion: 0.6093494g

Recovered targets

Return period: 3427.4809 yrs Exceedance rate: 0.00029175946 yr⁻¹

Totals

Binned: 100 % Residual: 0 % Trace: 0.06 %

Mean (for all sources)

r: 18.66 km m: 6.59 ϵ_0 : 2.04 σ

Mode (largest r-m bin)

r: 24.07 km m: 7.5 ϵ_0 : 2.03 σ Contribution: 6.37 %

Mode (largest ε_0 bin)

r: 20.7 km m: 8.08 ϵ_0 : 1.81 σ Contribution: 5.66 %

Discretization

r: min = 0.0, max = 1000.0, Δ = 20.0 km m: min = 4.4, max = 9.4, Δ = 0.2 ϵ : min = -3.0, max = 3.0, Δ = 0.5 σ

Epsilon keys

 $\begin{array}{l} \epsilon 0: [-\infty \cdot \cdot -2.5) \\ \epsilon 1: [-2.5 \cdot \cdot -2.0) \\ \epsilon 2: [-2.0 \cdot \cdot -1.5) \\ \epsilon 3: [-1.5 \cdot \cdot -1.0) \\ \epsilon 4: [-1.0 \cdot \cdot -0.5) \\ \epsilon 5: [-0.5 \cdot \cdot -0.0) \\ \epsilon 6: [0.0 \cdot \cdot -0.5) \\ \epsilon 7: [0.5 \cdot \cdot -1.0) \\ \epsilon 8: [1.0 \cdot \cdot -1.5) \\ \epsilon 9: [1.5 \cdot -2.0) \\ \epsilon 10: [2.0 \cdot -2.5) \\ \epsilon 11: [2.5 \cdot +\infty] \end{array}$

USGS Design Maps Detailed Report

ASCE 7-10 Standard (36.67357°N, 121.64495°W)

Site Class D - "Stiff Soil", Risk Category I/II/III

Section 11.4.1 — Mapped Acceleration Parameters

Note: Ground motion values provided below are for the direction of maximum horizontal spectral response acceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain S_s) and 1.3 (to obtain S_1). Maps in the 2010 ASCE-7 Standard are provided for Site Class B. Adjustments for other Site Classes are made, as needed, in Section 11.4.3.

From <u>Figure 22-1</u> ^[1]	S _s = 1.596 g
From <u>Figure 22-2^[2]</u>	S ₁ = 0.590 g

Section 11.4.2 — Site Class

The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has classified the site as Site Class D, based on the site soil properties in accordance with Chapter 20.

Site Class	,		- S u			
A. Hard Rock	>5,000 ft/s	N/A	N/A			
B. Rock	2,500 to 5,000 ft/s	N/A	N/A			
C. Very dense soil and soft rock	1,200 to 2,500 ft/s	>50	>2,000 psf			
D. Stiff Soil	600 to 1,200 ft/s	15 to 50	1,000 to 2,000 psf			
E. Soft clay soil	<600 ft/s	<15	<1,000 psf			
	 Any profile with more than 10 ft of soil having the cha Plasticity index PI > 20, Moisture content w ≥ 40%, and Undrained shear strength s_u < 500 psf 					
F. Soils requiring site response	See	e Section 20.3.1				

Table 20.3–1 Site Classification

analysis in accordance with Section

21.1

For SI: $1ft/s = 0.3048 \text{ m/s} 1lb/ft^2 = 0.0479 \text{ kN/m}^2$

Section 11.4.3 — Site Coefficients and Risk–Targeted Maximum Considered Earthquake (MCE_R) Spectral Response Acceleration Parameters

Site Class	Mapped MCE $_{\mbox{\tiny R}}$ Spectral Response Acceleration Parameter at Short Period								
	S₅ ≤ 0.25	$S_{s} = 0.50$	S _s = 0.75	$S_{s} = 1.00$	S₅ ≥ 1.25				
A	0.8	0.8	0.8	0.8	0.8				
В	1.0	1.0	1.0	1.0	1.0				
С	1.2	1.2	1.1	1.0	1.0				
D	1.6	1.4	1.2	1.1	1.0				
E	2.5	1.7	1.2	0.9	0.9				
F	See Section 11.4.7 of ASCE 7								

Table 11.4–1: Site Coefficient F_a

Note: Use straight–line interpolation for intermediate values of S_{s}

For Site Class = D and $S_s = 1.596 \text{ g}$, $F_a = 1.000$

Site Class	Mapped MCE $_{R}$ Spectral Response Acceleration Parameter at 1–s Period							
	$S_1 \le 0.10$	$S_1 = 0.20$	$S_1 = 0.30$	$S_1 = 0.40$	$S_1 \ge 0.50$			
A	0.8	0.8	0.8	0.8	0.8			
В	1.0	1.0	1.0	1.0	1.0			
С	1.7	1.6	1.5	1.4	1.3			
D	2.4	2.0	1.8	1.6	1.5			
E	3.5	3.2	2.8	2.4	2.4			
F	See Section 11.4.7 of ASCE 7							

Table 11.4-2: Site Coefficient F.

Note: Use straight-line interpolation for intermediate values of S_1

For Site Class = D and $S_1 = 0.590 \text{ g}$, $F_v = 1.500$

Equation (11.4-2):

 $S_{M1} = F_v S_1 = 1.500 \times 0.590 = 0.885 \text{ g}$

Section 11.4.4 — Design Spectral Acceleration Parameters

Equation (11.4-3): $S_{DS} = \frac{2}{3} S_{MS} = \frac{2}{3} \times 1.596 = 1.064 \text{ g}$

Equation (11.4-4):

 $S_{D1} = \frac{2}{3} S_{M1} = \frac{2}{3} \times 0.885 = 0.590 \text{ g}$

Section 11.4.5 — Design Response Spectrum

From Figure 22-12^[3]

 $T_L = 12$ seconds

Section 11.4.6 — Risk-Targeted Maximum Considered Earthquake (MCE_R) Response Spectrum

The MCE $_{\!\scriptscriptstyle R}$ Response Spectrum is determined by multiplying the design response spectrum above by

Section 11.8.3 — Additional Geotechnical Investigation Report Requirements for Seismic Design Categories D through F

From	Figure	22-7	[4]
------	--------	------	-----

PGA = 0.603

Equation (11.8–1):

 $PGA_{M} = F_{PGA}PGA = 1.000 \times 0.603 = 0.603 g$

Site	Маррес	MCE Geometri	c Mean Peak Gr	ound Accelerati	on, PGA
Class	PGA ≤ 0.10	PGA = 0.20	PGA = 0.30	PGA = 0.40	PGA ≥ 0.50
A	0.8	0.8	0.8	0.8	0.8
В	1.0	1.0	1.0	1.0	1.0
С	1.2	1.2	1.1	1.0	1.0
D	1.6	1.4	1.2	1.1	1.0
E	2.5	1.7	1.2	0.9	0.9
F		See Se	ction 11.4.7 of	ASCE 7	

Table 11.8–1: Site Coefficient $F_{\mbox{\tiny PGA}}$

Note: Use straight-line interpolation for intermediate values of PGA

For Site Class = D and PGA = 0.603 g, F_{PGA} = 1.000

Section 21.2.1.1 — Method 1 (from Chapter 21 – Site-Specific Ground Motion Procedures for Seismic Design)

From <u>Figure 22-17 ^[5]</u>	
---	--

 $C_{RS} = 1.059$

From **Figure 22-18**^[6]

 $C_{R1} = 1.001$

Section 11.6 — Seismic Design Category

	RISK CATEGORY			
	I or II	III	IV	
S _{DS} < 0.167g	A	А	А	
$0.167g \le S_{DS} < 0.33g$	В	В	С	
$0.33g \le S_{DS} < 0.50g$	С	С	D	
0.50g ≤ S _{DS}	D	D	D	

Table 11.6-1 Seismic Design Category Based on Short Period Response Acceleration Parameter

For Risk Category = I and S_{DS} = 1.064 g, Seismic Design Category = D

Fable 11.6-2 Seismic Desig	1 Category Based	on 1-S Period Respons	e Acceleration Parameter
----------------------------	------------------	-----------------------	--------------------------

VALUE OF SD1		RISK CATEGORY			
	I or II	III	IV		
S _{D1} < 0.067g	А	А	А		
$0.067g \le S_{D1} < 0.133g$	В	В	С		
$0.133g \le S_{D1} < 0.20g$	С	С	D		
0.20g ≤ S _{D1}	D	D	D		

For Risk Category = I and S_{D1} = 0.590 g, Seismic Design Category = D

Note: When S_1 is greater than or equal to 0.75g, the Seismic Design Category is **E** for buildings in Risk Categories I, II, and III, and **F** for those in Risk Category IV, irrespective of the above.

Seismic Design Category \equiv "the more severe design category in accordance with Table 11.6-1 or 11.6-2" = D

Note: See Section 11.6 for alternative approaches to calculating Seismic Design Category.

References

1. Figure 22-1:

https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-1.pdf 2. *Figure 22-2*:

https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-2.pdf 3. *Figure 22-12*:

https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-12.pdf 4. *Figure 22-7*:

- https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-7.pdf 5. *Figure 22-17*:
- https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-17.pdf 6. *Figure 22-18*:

https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-18.pdf

APPENDIX D2

Liquefaction Analysis

Leighton and Associates, Inc. 17781 Cowan Irvine, CA 92614 http://www.leightongroup.com

Project title : Salinas Police HQ Location : 321 E. Alisal Street, Salinas, CA

Overall Liquefaction Potential Index report

Leighton and Associates, Inc. 17781 Cowan Irvine, CA 92614 http://www.leightongroup.com

Project title : Salinas Police HQ Location : 321 E. Alisal Street, Salinas, CA

Overall vertical settlements report

CLiq v.1.7.6.49 - CPT Liquefaction Assessment Software - Report created on: 8/11/2017, 5:37:09 PM Project file: C:\Users\carl\OneDrive\Documents\2017 proposals\IR17-288 salinas police hq\analysis\fnds.clq

CLiq v.1.7.6.49 - CPT Liquefaction Assessment Software - Report created on: 8/11/2017, 5:37:10 PM Project file: C:\Users\carl\OneDrive\Documents\2017 proposals\IR17-288 salinas police hq\analysis\fnds.clq

CLiq v.1.7.6.49 - CPT Liquefaction Assessment Software - Report created on: 8/11/2017, 5:37:11 PM Project file: C:\Users\carl\OneDrive\Documents\2017 proposals\IR17-288 salinas police hq\analysis\fnds.clq

CLiq v.1.7.6.49 - CPT Liquefaction Assessment Software - Report created on: 8/11/2017, 5:37:12 PM Project file: C:\Users\carl\OneDrive\Documents\2017 proposals\IR17-288 salinas police hq\analysis\fnds.clq

CLiq v.1.7.6.49 - CPT Liquefaction Assessment Software - Report created on: 8/11/2017, 5:37:12 PM Project file: C:\Users\car\OneDrive\Documents\2017 proposals\IR17-288 salinas police hq\analysis\fnds.clq

CLiq v.1.7.6.49 - CPT Liquefaction Assessment Software - Report created on: 8/11/2017, 5:37:13 PM Project file: C:\Users\carl\OneDrive\Documents\2017 proposals\IR17-288 salinas police hq\analysis\fnds.clq

CLiq v.1.7.6.49 - CPT Liquefaction Assessment Software - Report created on: 8/11/2017, 5:37:14 PM Project file: C:\Users\carl\OneDrive\Documents\2017 proposals\IR17-288 salinas police hq\analysis\fnds.clq

CLiq v.1.7.6.49 - CPT Liquefaction Assessment Software - Report created on: 8/11/2017, 5:37:15 PM Project file: C:\Users\carl\OneDrive\Documents\2017 proposals\IR17-288 salinas police hq\analysis\fnds.clq

CLiq v.1.7.6.49 - CPT Liquefaction Assessment Software - Report created on: 8/11/2017, 5:37:17 PM Project file: C:\Users\car\OneDrive\Documents\2017 proposals\IR17-288 salinas police hq\analysis\fnds.clq

CLiq v.1.7.6.49 - CPT Liquefaction Assessment Software - Report created on: 8/11/2017, 5:37:18 PM Project file: C:\Users\carl\OneDrive\Documents\2017 proposals\IR17-288 salinas police hq\analysis\fnds.clq

APPENDIX E

Earthwork Grading Guide Specifications

APPENDIX E

LEIGHTON CONSULTING, INC. EARTHWORK AND GRADING GUIDE SPECIFICATIONS

TABLE OF CONTENTS

<u>Section</u>	<u>Appendix E Pag</u>	<u>e</u>
E-1.0 GE	ENERAL	1
E-1.1 E-1.2 E-1.3	Intent Role of Leighton Consulting, Inc The Earthwork Contractor	1 1 1
E-2.0 PR	EPARATION OF AREAS TO BE FILLED	2
E-2.1 E-2.2 E-2.3 E-2.4 E-2.5	Clearing and Grubbing Processing Overexcavation Benching Evaluation/Acceptance of Fill Areas	2 3 3 3 3
E-3.0 FIL	L MATERIAL	4
E-3.1 E-3.2 E-3.3	Fill Quality Oversize Import	4 4 4
E-4.0 FIL	L PLACEMENT AND COMPACTION	4
E-4.1 E-4.2 E-4.3 E-4.4 E-4.5 E-4.6	Fill Layers Fill Moisture Conditioning Compaction of Fill Slopes Compaction Testing Compaction Test Locations	4 5 5 5 5 5
E-5.0 EX		6
E-6.0 TR	ENCH BACKFILLS	6
E-6.1 E-6.2 E-6.3	Safety Bedding and Backfill Lift Thickness	6 6 7

E-1.0 GENERAL

E-1.1 Intent

These Earthwork and Grading Guide Specifications are for grading and earthwork shown on the current, approved grading plan(s) and/or indicated in the Leighton Consulting, Inc. geotechnical report(s). These Guide Specifications are a part of the recommendations contained in the geotechnical report(s). In case of conflict, the project-specific recommendations in the geotechnical report shall supersede these Guide Specifications. Leighton Consulting, Inc. shall provide geotechnical observation and testing during earthwork and grading. Based on these observations and tests, Leighton Consulting, Inc. may provide new or revised recommendations that could supersede these specifications or the recommendations in the geotechnical report(s).

E-1.2 Role of Leighton Consulting, Inc.

Prior to commencement of earthwork and grading, Leighton Consulting, Inc. shall meet with the earthwork contractor to review the earthwork contractor's work plan, to schedule sufficient personnel to perform the appropriate level of observation, mapping and compaction testing. During earthwork and grading, Leighton Consulting, Inc. shall observe, map, and document subsurface exposures to verify geotechnical design assumptions. If observed conditions are found to be significantly different than the interpreted assumptions during the design phase, Leighton Consulting, Inc. shall inform the owner, recommend appropriate changes in design to accommodate these observed conditions, and notify the review agency where required. Subsurface areas to be geotechnically observed, mapped, elevations recorded, and/or tested include (1) natural ground after clearing to receiving fill but before fill is placed, (2) bottoms of all "remedial removal" areas, (3) all key bottoms, and (4) benches made on sloping ground to receive fill.

Leighton Consulting, Inc. shall observe moisture-conditioning and processing of the subgrade and fill materials, and perform relative compaction testing of fill to determine the attained relative compaction. Leighton Consulting, Inc. shall provide *Daily Field Reports* to the owner and the Contractor on a routine and frequent basis.

E-1.3 <u>The Earthwork Contractor</u>

The earthwork contractor (Contractor) shall be qualified, experienced and knowledgeable in earthwork logistics, preparation and processing of ground to receive fill, moisture-conditioning and processing of fill, and compacting fill. The Contractor shall review and accept the plans, geotechnical report(s), and these Guide

Specifications prior to commencement of grading. The Contractor shall be solely responsible for performing grading and backfilling in accordance with the current, approved plans and specifications.

The Contractor shall inform the owner and Leighton Consulting, Inc. of changes in work schedules at least one working day in advance of such changes so that appropriate observations and tests can be planned and accomplished. The Contractor shall not assume that Leighton Consulting, Inc. is aware of all grading operations.

The Contractor shall have the sole responsibility to provide adequate equipment and methods to accomplish earthwork and grading in accordance with the applicable grading codes and agency ordinances, these Guide Specifications, and recommendations in the approved geotechnical report(s) and grading plan(s). If, in the opinion of Leighton Consulting, Inc., unsatisfactory conditions, such as unsuitable soil, improper moisture condition, inadequate compaction, adverse weather, etc., are resulting in a quality of work less than required in these specifications, Leighton Consulting, Inc. shall reject the work and may recommend to the owner that earthwork and grading be stopped until unsatisfactory condition(s) are rectified.

E-2.0 PREPARATION OF AREAS TO BE FILLED

E-2.1 Clearing and Grubbing

Vegetation, such as brush, grass, roots and other deleterious material shall be sufficiently removed and properly disposed of in a method acceptable to the owner, governing agencies and Leighton Consulting, Inc.. Care should be taken not to encroach upon or otherwise damage native and/or historic trees designated by the Owner or appropriate agencies to remain. Pavements, flatwork or other construction should not extend under the "drip line" of designated trees to remain.

Leighton Consulting, Inc. shall evaluate the extent of these removals depending on specific site conditions. Earth fill material shall not contain more than 3 percent of organic materials (by dry weight: ASTM D 2974). Nesting of the organic materials shall not be allowed.

If potentially hazardous materials are encountered, the Contractor shall stop work in the affected area, and a hazardous material specialist shall be informed immediately for proper evaluation and handling of these materials prior to continuing to work in that area. As presently defined by the State of California, most refined petroleum products (gasoline, diesel fuel, motor oil, grease, coolant, etc.) have chemical constituents that

are considered to be hazardous waste. As such, the indiscriminate dumping or spillage of these fluids onto the ground may constitute a misdemeanor, punishable by fines and/or imprisonment, and shall not be allowed.

E-2.2 Processing

Existing ground that has been declared satisfactory for support of fill, by Leighton Consulting, Inc., shall be scarified to a minimum depth of 6 inches (15 cm). Existing ground that is not satisfactory shall be over-excavated as specified in the following Section D-2.3. Scarification shall continue until soils are broken down and free of large clay lumps or clods and the working surface is reasonably uniform, flat, and free of uneven features that would inhibit uniform compaction.

E-2.3 Overexcavation

In addition to removals and over-excavations recommended in the approved geotechnical report(s) and the grading plan, soft, loose, dry, saturated, spongy, organicrich, highly fractured or otherwise unsuitable ground shall be over-excavated to competent ground as evaluated by Leighton Consulting, Inc. during grading. All undocumented fill soils under proposed structure footprints should be excavated

E-2.4 Benching

Where fills are to be placed on ground with slopes steeper than 5:1 (horizontal to vertical units), (>20 percent grade) the ground shall be stepped or benched. The lowest bench or key shall be a minimum of 15 feet (4.5 m) wide and at least 2 feet (0.6 m) deep, into competent material as evaluated by Leighton Consulting, Inc.. Other benches shall be excavated a minimum height of 4 feet (1.2 m) into competent material or as otherwise recommended by Leighton Consulting, Inc.. Fill placed on ground sloping flatter than 5:1 (horizontal to vertical units), (<20 percent grade) shall also be benched or otherwise over-excavated to provide a flat subgrade for the fill.

E-2.5 Evaluation/Acceptance of Fill Areas

All areas to receive fill, including removal and processed areas, key bottoms, and benches, shall be observed, mapped, elevations recorded, and/or tested prior to being accepted by Leighton Consulting, Inc. as suitable to receive fill. The Contractor shall obtain a written acceptance (*Daily Field Report*) from Leighton Consulting, Inc. prior to fill placement. A licensed surveyor shall provide the survey control for determining elevations of processed areas, keys and benches.

E-3.0 FILL MATERIAL

E-3.1 Fill Quality

Material to be used as fill shall be essentially free of organic matter and other deleterious substances evaluated and accepted by Leighton Consulting, Inc. prior to placement. Soils of poor quality, such as those with unacceptable gradation, high expansion potential, or low strength shall be placed in areas acceptable to Leighton Consulting, Inc. or mixed with other soils to achieve satisfactory fill material.

E-3.2 Oversize

Oversize material defined as rock, or other irreducible material with a maximum dimension greater than 6 inches (15 cm), shall not be buried or placed in fill unless location, materials and placement methods are specifically accepted by Leighton Consulting, Inc.. Placement operations shall be such that nesting of oversized material does not occur and such that oversize material is completely surrounded by compacted or densified fill. Oversize material shall not be placed within 10 feet (3 m) measured vertically from finish grade, or within 2 feet (0.61 m) of future utilities or underground construction.

E-3.3 Import

If importing of fill material is required for grading, proposed import material shall meet the requirements of Section D-3.1, and be free of hazardous materials ("contaminants") and rock larger than 3-inches (8 cm) in largest dimension. All import soils shall have an Expansion Index (EI) of 20 or less and a sulfate content no greater than (\leq) 500 partsper-million (ppm). A representative sample of a potential import source shall be given to Leighton Consulting, Inc. at least four full working days before importing begins, so that suitability of this import material can be determined and appropriate tests performed.

E-4.0 FILL PLACEMENT AND COMPACTION

E-4.1 Fill Layers

Approved fill material shall be placed in areas prepared to receive fill, as described in Section D-2.0, above, in near-horizontal layers not exceeding 8 inches (20 cm) in loose thickness. Leighton Consulting, Inc. may accept thicker layers if testing indicates the grading procedures can adequately compact the thicker layers, and only if the building officials with the appropriate jurisdiction approve. Each layer shall be spread evenly and mixed thoroughly to attain relative uniformity of material and moisture throughout.

E-4.2 Fill Moisture Conditioning

Fill soils shall be watered, dried back, blended and/or mixed, as necessary to attain a relatively uniform moisture content at or slightly over optimum. Maximum density and optimum soil moisture content tests shall be performed in accordance with the American Society of Testing and Materials (ASTM) Test Method D 1557.

E-4.3 Compaction of Fill

After each layer has been moisture-conditioned, mixed, and evenly spread, each layer shall be uniformly compacted to not-less-than (\geq) 90 percent of the maximum dry density as determined by ASTM Test Method D 1557. In some cases, structural fill may be specified (see project-specific geotechnical report) to be uniformly compacted to at-least (\geq) 95 percent of the ASTM D 1557 modified Proctor laboratory maximum dry density. For fills thicker than (>) 15 feet (4.5 m), the portion of fill deeper than 15 feet below proposed finish grade shall be compacted to 95 percent of the ASTM D 1557 laboratory maximum density. Compaction equipment shall be adequately sized and be either specifically designed for soil compaction or of proven reliability to efficiently achieve the specified level of compaction with uniformity.

E-4.4 Compaction of Fill Slopes

In addition to normal compaction procedures specified above, compaction of slopes shall be accomplished by back rolling of slopes with sheepsfoot rollers at increments of 3 to 4 feet (1 to 1.2 m) in fill elevation, or by other methods producing satisfactory results acceptable to Leighton Consulting, Inc.. Upon completion of grading, relative compaction of the fill, out to the slope face, shall be at least 90 percent of the ASTM D 1557 laboratory maximum density.

E-4.5 Compaction Testing

Field-tests for moisture content and relative compaction of the fill soils shall be performed by Leighton Consulting, Inc.. Location and frequency of tests shall be at our field representative(s) discretion based on field conditions encountered. Compaction test locations will not necessarily be selected on a random basis. Test locations shall be selected to verify adequacy of compaction levels in areas that are judged to be prone to inadequate compaction (such as close to slope faces and at the fill/bedrock benches).

E-4.6 Compaction Test Locations

Leighton Consulting, Inc. shall document the approximate elevation and horizontal coordinates of each density test location. The Contractor shall coordinate with the project surveyor to assure that sufficient grade stakes are established so that Leighton

Consulting, Inc. can determine the test locations with sufficient accuracy. Adequate grade stakes shall be provided.

E-5.0 EXCAVATION

Excavations, as well as over-excavation for remedial purposes, shall be evaluated by Leighton Consulting, Inc. during grading. Remedial removal depths shown on geotechnical plans are estimates only. The actual extent of removal shall be determined by Leighton Consulting, Inc. based on the field evaluation of exposed conditions during grading. Where fill-over-cut slopes are to be graded, the cut portion of the slope shall be made, then observed and reviewed by Leighton Consulting, Inc. prior to placement of materials for construction of the fill portion of the slope, unless otherwise recommended by Leighton Consulting, Inc..

E-6.0 TRENCH BACKFILLS

E-6.1 Safety

The Contractor shall follow all OSHA and Cal/OSHA requirements for safety of trench excavations. Work should be performed in accordance with Article 6 of the *California Construction Safety Orders*, 2009 Edition or more current (see also: http://www.dir.ca.gov/title8/sb4a6.html).

E-6.2 Bedding and Backfill

All utility trench bedding and backfill shall be performed in accordance with applicable provisions of the 2015 Edition of the *Standard Specifications for Public Works Construction* (Green Book). Bedding material shall have a Sand Equivalent greater than 30 (SE>30). Bedding shall be placed to 1-foot (0.3 m) over the top of the conduit, and densified by jetting in areas of granular soils, if allowed by the permitting agency. Otherwise, the pipe-bedding zone should be backfilled with Controlled Low Strength Material (CLSM) consisting of at least one sack of Portland cement per cubic-yard of sand, and conforming to Section 201-6 of the 2015 Edition of the *Standard Specifications for Public Works Construction* (Green Book). Backfill over the bedding zone shall be placed and densified mechanically to a minimum of 90 percent of relative compaction (ASTM D 1557) from 1 foot (0.3 m) above the top of the conduit to the surface. Backfill above the pipe zone shall **not** be jetted. Jetting of the bedding around the conduits shall be observed and tested by Leighton Consulting, Inc. and backfill above the pipe zone (bedding) shall be observed and tested by Leighton Consulting, Inc..

E-6.3 Lift Thickness

Lift thickness of trench backfill shall not exceed those allowed in the Standard Specifications of Public Works Construction unless the Contractor can demonstrate to Leighton Consulting, Inc. that the fill lift can be compacted to the minimum relative compaction by his alternative equipment and method, and only if the building officials with the appropriate jurisdiction approve.

